Evolution of Spiking Neural Controllers for Autonomous Vision-Based Robots

  • Dario Floreano
  • Claudio Mattiussi
Conference paper

DOI: 10.1007/3-540-45502-7_2

Part of the Lecture Notes in Computer Science book series (LNCS, volume 2217)
Cite this paper as:
Floreano D., Mattiussi C. (2001) Evolution of Spiking Neural Controllers for Autonomous Vision-Based Robots. In: Gomi T. (eds) Evolutionary Robotics. From Intelligent Robotics to Artificial Life. EvoRobots 2001. Lecture Notes in Computer Science, vol 2217. Springer, Berlin, Heidelberg

Abstract

We describe a set of preliminary experiments to evolve spiking neural controllers for a vision-based mobile robot. All the evolutionary experiments are carried out on physical robots without human intervention. After discussing how to implement and interface these neurons with a physical robot, we show that evolution finds relatively quickly functional spiking controllers capable of navigating in irregularly textured environments without hitting obstacles using a very simple genetic encoding and fitness function. Neuroethological analysis of the network activity let us understand the functioning of evolved controllers and tell the relative importance of single neurons independently of their observed firing rate. Finally, a number of systematic lesion experiments indicate that evolved spiking controllers are very robust to synaptic strength decay that typically occurs in hardware implementations of spiking circuits.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Dario Floreano
    • 1
  • Claudio Mattiussi
    • 1
  1. 1.Evolutionary & Adaptive SystemsInstitute of Robotics Swiss Federal Institute of TechnologySwitzerland

Personalised recommendations