Advertisement

Generalizing the Modal and Temporal Logic of Linear Time

  • Bernhard Heinemann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1816)

Abstract

In the present paper we generalize two fundamental systems modelling the flow of time: the modal logic S4.3 and propositional linear time temporal logic. We allow to consider a whole set of states instead of only a single one at every time. Moreover, we assume that these sets increase in the course of time. Thus we get a basic formalism expressing a distinguished dynamic aspect of sets, growing. Our main results include completeness of the proposed axiomatizations and decidability of the set of all formally provable formulas.

Keywords

Modal Logic Temporal Logic Completeness Proof Accessibility Relation Canonical Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Forthcoming; see URL http://turing/wins/uva/nl/~mdr/Publications/modal-logic.html
  2. 2.
    Chellas, B. F.: Modal Logic: An Introduction. Cambridge University Press, Cambridge (1980)zbMATHGoogle Scholar
  3. 3.
    Dabrowski, A., Moss, L.S., Parikh, R.: Topological Reasoning and The Logic of Knowledge. Annals of Pure and Applied Logic 78 (1996) 73–110zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Davoren, J.: Modal Logics for Continuous Dynamics. PhD dissertation, Department of Mathematics, Cornell University (1998)Google Scholar
  5. 5.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press, Cambridge (Mass.) (1995)zbMATHGoogle Scholar
  6. 6.
    Georgatos, K.: Knowledge on Treelike Spaces. Studia Logica 59 (1997) 271–301zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Goldblatt, R.: Logics of Time and Computation. CSLI Lecture Notes 7, Stanford, CA (1987)Google Scholar
  8. 8.
    Halpern, J.Y., Vardi, M.Y.: The Complexity of Reasoning about Knowledge and Time. I. Lower Bounds. Journal of Computer and System Sciences 38 (1989) 195–237zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hansen, M.R., Chaochen, Z.: Duration Calculus: Logical Foundations. Formal Aspects of Computing 9 (1997) 283–330zbMATHCrossRefGoogle Scholar
  10. 10.
    Heinemann, B.: Topological Nexttime Logic. In: Kracht, M., de Rijke, M., Wansing, H., Zakharyaschev, M. (eds.): Advances in Modal Logic, Vol. 1. CSLI Publications 87, Stanford, CA (1998) 99–113Google Scholar
  11. 11.
    Heinemann, B.: Temporal Aspects of the Modal Logic of Subset Spaces. Theoretical Computer Science 224(1–2) (1999) 135–155zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    McKinsey, J.C.C.: A Solution to the Decision Problem for the Lewis Systems S2 and S4, with an Application to Topology. J. Symbolic Logic 6(3) (1941) 117–141MathSciNetGoogle Scholar
  13. 13.
    Nutt, W.: On the Translation of Qualitative Spatial Reasoning Problems into Modal Logics. Lecture Notes in Computer Science Vol. 1701 (1999) 113–125Google Scholar
  14. 14.
    Ono, H., Nakamura, A.: On the Size of Refutation Kripke Models for Some Linear Modal and Tense Logics. Studia Logica 39 (1980) 325–333zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Bernhard Heinemann
    • 1
  1. 1.Fachbereich InformatikFern Universität HagenHagenGermany

Personalised recommendations