Time and Probability in Process Algebra

  • Suzana Andova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1816)


In the paper we present an ACP-like process algebra which can be used to model both probabilistic and time behaviour of parallel systems. This process algebra is obtained by extension of untimed probabilistic process algebra with constructors that allow the explicit specification of timing aspects. In this paper we concentrate on giving axioms and deduction rules for these constructors. We give two probabilistic process algebras with discrete time. The first one only manipulates with processes that may be initialized within the current time slice or may delay a finite and fixed number of time slices. Later, we add processes whose execution can be postponed for an arbitrary number of time slices.


Probability Distribution Function Time Slice Operational Semantic Axiom System Probabilistic Choice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Andova, Process algebra with interleaving probabilistic parallel composition, CSR 99-04, Eindhoven University of Technology, 1999.Google Scholar
  2. 2.
    S. Andova, Process algebra with probabilistic choice (extended abstract), Proc. ARTS’99, Bamberg, Germany, J.-P. Katoen, ed., LNCS 1601, Springer-Verlag, pp. 111–129, 1999. Full version report CSR 99-12, Eindhoven University of Technology, 1999.Google Scholar
  3. 3.
    S. Andova, Discrete relative time in probabilistic process algebra, Eindhoven University of Technology, CSR 00-**, 2000.Google Scholar
  4. 4.
    J.C.M. Baeten, J.A. Bergstra, Real time process algebra, Formal Aspects of Computing, 3(2):142–188, 1991.CrossRefMathSciNetGoogle Scholar
  5. 5.
    J.C.M. Baeten, J.A. Bergstra, Process algebra with partial choice, Proc. CONCUR’94, Uppsala, B. Jonsson & J. Parrow, eds., LNCS 836, Springer Verlag, 465–480, 1994.Google Scholar
  6. 6.
    J.C.M. Baeten, J.A. Bergstra, Discrete time process algebra, Formal Aspects of Computing, 8(2):188–208, 1996.zbMATHCrossRefGoogle Scholar
  7. 7.
    J.C.M. Baeten, J. A. Bergstra, Discrete time process algebra: Absolute time, relative time and parametric time, Fundamenta Informaticæ, 29(1,2):51–76, 1997.MathSciNetGoogle Scholar
  8. 8.
    J.C.M. Baeten, C. A. Middelburg, Process algebra with timing: Real time and discrete time, Eindhoven University of Technology, CSR 99-11, 1999. To appear in J.A. Bergstra, A. Ponse and S.A. Smolka, ed., Handbook of Process Algebra, Elsevier, 2000.Google Scholar
  9. 9.
    J.C.M. Baeten, W.P. Weijland, Process algebra, Cambridge University Press, 1990.Google Scholar
  10. 10.
    J.C.M. Baeten, C. Verhoef, Concrete process algebra, Handbook of Logic in Computer Science, volume 4: “Semantic Modelling”, Oxford University Press, 1995.Google Scholar
  11. 11.
    J.C.M. Baeten, J.A. Bergstra, S.A. Smolka, Axiomatizing probabilistic processes: ACP with generative probabilities, Information and Computation 121(2): 234–255, September 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    D. Bošnački, Discrete time specification of the PAR protocol, (unpublished paper).Google Scholar
  13. 13.
    P.R. D’Argenio, H. Hermanns, J.-P. Katoen On generative parallel composition, Preliminary Proc. of PROBMIV’98, Indianapolis, USA, C. Baier & M. Huth & M Kwiatkowska & M. Ryan ed., 105–121, 1998.Google Scholar
  14. 14.
    A. Giacalone, C.-C. Jou, S. A. Smolka, Algebraic reasoning for probabilistic concurrent systems, Proc. Working Conference on Programming Concepts and Methods, IFIP TC 2, Sea of Galilee, Israel, M. Broy & C.B. Jones ed., 443–458, 1990.Google Scholar
  15. 15.
    R. J. van Glabbeek, S. A. Smolka, B. Steffen, C. M. N. Tofts, Reactive, generative and stratified models of probabilistic processes, Proc. of 5th Annual IEEE Symp. on Logic in Computer Science, Philadelphia, PA, 130–141, 1990.Google Scholar
  16. 16.
    H. Hansson, Time and probability in formal design of distributed systems, Ph.D. thesis, DoCS 91/27, University of Uppsala, 1991.Google Scholar
  17. 17.
    H. Hennessy, T. Regan, A process algebra for timed systems, Information and Computation, 117(2):221–239,1995.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    A. Jeffrey, Discrete Timed CSP, Tech. Report PMG Memo 78, Chalmers University of Technology, Dep. of Computer Sciences, 1991.Google Scholar
  19. 19.
    B. Jonsson, K.G. Larsen, Specification and refinement of probabilistic processes, Proc. of 6th Annual IEEE Symp. on Logic in Computer Science, Amsterdam, 1991.Google Scholar
  20. 20.
    C.-C. Jou, S. A. Smolka Equivalences, congruences and complete axiomatizations for probabilistic processes, Proc. CONCUR’ 90, LNCS 458, Springer Verlag, Berlin, 367–383, 1990.Google Scholar
  21. 21.
    K.G. Larsen, A. Skou, Bisimulation through probabilistic testing, Proc. of 16th ACM Symp. on Principles of Programming Languages, Austin, TX, 1989.Google Scholar
  22. 22.
    F.W. Vaandrager, Two simple protocols, In: Applications of Process Algebra, Cambridge University Press, J.C.M. Baeten ed., pp.23–44, 1990.Google Scholar
  23. 23.
    J. J. Vereijken, Discrete-time process algebra, Ph.D. thesis, IPA 97/06, Eindhoven University of Technology, Computing Science Department, 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Suzana Andova
    • 1
  1. 1.Department of Mathematics and Computing ScienceEindhoven University of TechnologyThe Netherlands

Personalised recommendations