Verification within the KARO Agent Theory

  • Ullrich Hustadt
  • Clare Dixon
  • Renate A. Schmidt
  • Michael Fisher
  • John-Jules Meyer
  • Wiebe van der Hoek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1871)

Abstract

This paper discusses automated reasoning in the KARO framework. The KARO framework accommodates a range of expressive modal logics for describing the behaviour of intelligent agents. We concentrate on a core logic within this framework, in particular, we describe two new methods for providing proof methods for this core logic, discuss some of the problems we have encountered in their design, and present an extended example of the use of the KARO framework and the two proof methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Bachmair and H. Ganzinger. Resolution theorem proving. To appear in J.A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning.Google Scholar
  2. 2.
    M. Benerecetti, F. Giunchiglia, and L. Serafini. Model checking multiagent systems (extended abstract). In Proc. ATAL-98, volume 1555 of LNAI. Springer, 1999.Google Scholar
  3. 3.
    A. Bolotov and M. Fisher. A clausal resolution method for ctl branching time temporal logic. Journal of Experimental and Theoretical Artificial Intelligence, 11:77–93, 1999.MATHCrossRefGoogle Scholar
  4. 4.
    E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. on Programming Languages and Systems, 8(2):244–263, 1986.MATHCrossRefGoogle Scholar
  5. 5.
    H. de Nivelle. Translation of S4 into GF and 2VAR. Manuscript, May 1999.Google Scholar
  6. 6.
    H. De Nivelle, R. A. Schmidt, and U. Hustadt. Resolution-based methods for modal logics. Logic Journal of the IGPL, 8(3):265–292, 2000.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    C. Dixon, M. Fisher, and A. Bolotov. Resolution in a Logic of Rational Agency. In Proc. ECAI 2000, pages 358–362. IOS Press, 2000.Google Scholar
  8. 8.
    C. Dixon, M. Fisher, and M. Wooldridge. Resolution for temporal logics of knowledge. Journal of Logic and Computation, 8(3):345–372, 1998.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    C. Fermüller, A. Leitsch, T. Tammet, and N. Zamov. Resolution Method for the Decicion Problem, volume 679 of LNCS. Springer, 1993.Google Scholar
  10. 10.
    M. Fisher, C. Dixon, and M. Peim. Clausal Temporal Resolution. ACM Transactions on Computational Logic, 2(1), 2001.Google Scholar
  11. 11.
    R. Goré. Tableau methods for modal and temporal logics. In M. D’Agostino, D. Gabbay, R. Hähnle, and J. Posegga, editors, Handbook of Tableau Methods, pages 297–396. Kluwer, 1999.Google Scholar
  12. 12.
    J. Y. Halpern and M. Y. Vardi. The complexity of reasoning about knowledge and time I: Lower bounds. Journal of Computer and System Sciences, 38:195–237, 1989.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    U. Hustadt. Resolution-Based Decision Procedures for Subclasses of First-Order Logic. PhD thesis, Universität des Saarlandes, Saarbrücken, Germany, 1999.Google Scholar
  14. 14.
    U. Hustadt, C. Dixon, R. A. Schmidt, and M. Fisher. Normal forms and proofs in combined modal and temporal logics. In Proc. FroCoS’2000, volume 1794 of LNAI, pages 73–87. Springer, 2000.Google Scholar
  15. 15.
    U. Hustadt and R. A. Schmidt. Using resolution for testing modal satisfiability and building models. To appear in the Journal of Automated Reasoning, 2001.Google Scholar
  16. 16.
    B. van Linder, W. van der Hoek, and J.-J. Ch. Meyer. Formalizing abilities and opportunities of agents. Fundamenta Informaticae, 34(1,2):53–101, 1998.MATHMathSciNetGoogle Scholar
  17. 17.
    G. Mints. Gentzen-type systems and resolution rules. Part I: Propositional logic. In Proc. COLOG-88, volume 417 of LNCS, pages 198–231. Springer, 1990.Google Scholar
  18. 18.
    H. J. Ohlbach. Combining Hilbert style and semantic reasoning in a resolution framework. In Proc. CADE-15, volume 1421 of LNAI, pages 205–219. Springer, 1998.Google Scholar
  19. 19.
    D. A. Plaisted and S. Greenbaum. A structure-preserving clause form translation. Journal of Symbolic Computation, 2:293–304, 1986.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    A. S. Rao and M. P. Georgeff. Modeling agents withing a BDI-architecture. In Proc. KR-91, pages 473–484. Morgan Kaufmann, 1991.Google Scholar
  21. 21.
    R. A. Schmidt. Decidability by resolution for propositional modal logics. Journal of Automated Reasoning, 22(4):379–396, 1999.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    B. van Linder, W. van der Hoek, and J.-J. Ch. Meyer. Communicating rational agents. In Proc. KI-94, volume 861 of LNAI, pages 202–213. Springer, 1994.Google Scholar
  23. 23.
    B. van Linder, W. van der Hoek, and J.-J. Ch. Meyer. Howto motivate your agents. In Intelligent Agents II, volume 1037 of LNAI. Springer, 1996.Google Scholar
  24. 24.
    C. Weidenbach et al. System description: spass version 1.0.0. In Proc. CADE-16, volume 1632 of LNAI, pages 378–382. Springer, 1999.Google Scholar
  25. 25.
    G. Weiß, editor. Multiagent systems: A modern approach to distributed artificial intelligence. MIT Press, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Ullrich Hustadt
    • 1
  • Clare Dixon
    • 1
  • Renate A. Schmidt
    • 2
  • Michael Fisher
    • 1
  • John-Jules Meyer
    • 3
  • Wiebe van der Hoek
    • 3
  1. 1.Centre for Agent Research and DevelopmentManchester Metropolitan UniversityUK
  2. 2.Department of Computer ScienceUniversity of ManchesterUK
  3. 3.Department of Computer ScienceUniversity of Utrecht and AmsterdamThe Netherlands

Personalised recommendations