Evaluation of Salient Point Techniques

  • N. Sebe
  • Q. Tian
  • E. Loupias
  • M. Lew
  • T. Huang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2383)


In image retrieval, global features related to color or texture are commonly used to describe the image content. The problem with this approach is that these global features cannot capture all parts of the image having different characteristics. Therefore, local computation of image information is necessary. By using salient points to represent local information, more discriminative features can be computed. In this paper we compare a wavelet-based salient point extraction algorithm with two corner detectors using the criteria: repeatability rate and information content. We also show that extracting color and texture information in the locations given by our salient points provides significantly improved results in terms of retrieval accuracy, computational complexity, and storage space of feature vectors as compared to global feature approaches.


Feature Vector Image Retrieval Salient Point Texture Region Retrieval Accuracy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haralick, R., Shapiro, L.: Computer and Robot Vision II. Addison-Wesley (1993)Google Scholar
  2. 2.
    Schmid, C., Mohr, R.: Local grayvalue invariants for image retrieval. IEEE Trans on Patt Anal and Mach Intell 19 (1997) 530–535CrossRefGoogle Scholar
  3. 3.
    Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interst point detectors. I. J. Comp. Vis. 37 (2000) 151–172zbMATHCrossRefGoogle Scholar
  4. 4.
    Harris, C., Stephens, M.: A combined corner and edge detector. Alvey. Vis. Conf. (1993) 147–151Google Scholar
  5. 5.
    Loupias, E., Sebe, N.: Wavelet-based salient points: Applications to image retrieval using color and texture features. In: Visual’00. (2000) 223–232Google Scholar
  6. 6.
    Tian, Q., Sebe, N., Lew, M., oupias, E., Huang, T.: Image retrieval using wavelet-based salient points. Journal of Electronic Imaging 10 (2001) 835–849CrossRefGoogle Scholar
  7. 7.
    Koenderink, J., van Doorn, A.: Representation of local geometry in the visual system. Biological Cybernetics 55 (1987) 367–375zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Sebe, N., Tian, Q., Loupias, E., Lew, M., Huang, T.: Color indexing using wavelet-based salient points. In: IEEE Workshop on Content-based Access of Image and Video Libraries. (2000) 15–19Google Scholar
  9. 9.
    Stricker, A., Orengo, M.: Similarity of color images. SPIE-Storage and Retrieval for Image and Video Databases III 2420 (1995) 381–392Google Scholar
  10. 10.
    Smith, J., Chang, S.F.: Transform features for texture classification and discrimination in large image databases. Int Conf on Imag Process 3 (1994) 407–411Google Scholar
  11. 11.
    Ma, W., Manjunath, B.: A comparison of wavelet transform features for texture image annotation. Int Conf on Imag Process 2 (1995) 256–259Google Scholar
  12. 12.
    Gevers, T., Smeulders, A.: PicToSeek: Combining color and shape invariant features for image retrieval. IEEE Trans Imag Process 20 (2000) 102–119CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • N. Sebe
    • 1
  • Q. Tian
    • 2
  • E. Loupias
    • 3
  • M. Lew
    • 1
  • T. Huang
    • 2
  1. 1.LIACSLeiden UniversityLeidenThe Netherlands
  2. 2.Beckman InstituteUniversity of Illinois at Urbana-ChampaignUSA
  3. 3.Laboratoire Reconnaissance de Formes et VisionINSA-LyonFrance

Personalised recommendations