On Star Coloring of Graphs

  • Guillaume Fertin
  • André Raspaud
  • Bruce Reed
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2204)


In this paper, we deal with the notion of star coloring of graphs. A star coloring of an undirected graph G is a proper vertex coloring of G (i.e., no two neighbors are assigned the same color) such that any path of length 3 in G is not bicolored.

We give the exact value of the star chromatic number of different families of graphs such as trees, cycles, complete bipartite graphs, outerplanar graphs and 2-dimensional grids. We also study and give bounds for the star chromatic number of other families of graphs, such as hypercubes, tori, d-dimensional grids, graphs with bounded treewidth and planar graphs.


graphs vertex coloring proper coloring star coloring acyclic coloring treewidth 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Alon, C. McDiarmid, and B. Reed. Acyclic colourings of graphs. Random Structures and Algorithms, 2:277–288, 1990.MathSciNetCrossRefGoogle Scholar
  2. 2.
    O.V. Borodin, A.V. Kostochka, A. Raspaud, and E. Sopena. Acyclic k-strong coloring of maps on surfaces. Mathematical Notes, 67(1):29–35, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    O.V. Borodin, A.V. Kostochka, and D.R. Woodall. Acyclic colourings of planar graphs with large girth. J. London Math. Soc., 60(2):344–352, 1999.CrossRefMathSciNetGoogle Scholar
  4. 4.
    A. Brandstädt, V.B. Le, and J.P. Spinrad. Graph Classes A survey. SIAM Monographs on D.M. and Applications, 1999.Google Scholar
  5. 5.
    H.L. Bodlander. A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science, 209:1–45, 1998.CrossRefMathSciNetGoogle Scholar
  6. 6.
    O.V. Borodin. On acyclic colorings of planar graphs. Discrete Mathematics, 25:211–236, 1979.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    G. Fertin, A. Raspaud, and B. Reed. On star coloring of graphs. Technical report, 2001.Google Scholar
  8. 8.
    B. Grünbaum. Acyclic colorings of planar graphs. Israel J. Math., 14(3):390–408, 1973.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    D.S. Kim, D.-Z. Du, and P.M. Pardalos. A coloring problem on the n-cube. Discrete Applied Mathematics, 103:307–311, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    T.A. McKee and F.R. McMorris. Topics in intersection graph theory. SIAM Monographs on D.M. and Applications, 1999.Google Scholar
  11. 11.
    N. Robertson and P.D. Seymour. Graph minors. 1. excluding a forest. J. Combin. Theory Ser. B, 35:39–61, 1983.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    P.-J. Wan. Near-optimal conflict-free channel set assignments for an optical clusterbased hypercube network. J. Combin. Optim., 1:179–186, 1997.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Guillaume Fertin
    • 1
  • André Raspaud
    • 2
  • Bruce Reed
    • 3
  1. 1.IRIN UPRES-EA 2157, Université de NantesNantes Cedex 3France
  2. 2.LaBRI U.M.R. 5800, Université Bordeaux 1Talence CedexFrance
  3. 3.Univ. Paris 6 - Equipe Combinatoire - Case 189ParisFrance

Personalised recommendations