Advertisement

From Numerical to Symbolic Data during the Recognition of Scenarii

  • S. Loriette-Rougegrez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2385)

Abstract

The objective of this paper is to present a system that is able to recognize the occurrence of a scenario evolving over time and space. Scenarii are considered to be made up of several stages. The transition from a stage to another one requires the satisfaction of conditions. These features have led us to the construction of a graph which is run by means of a rule-based system. Transitions are validated with the transformation of numerical data into symbolic ones. Data’s uncertainty is considered by means of the computation of an evidence’s mass for each transition. The system described in this paper is applied to the recognition of maneuvers performed by a car driver.

Keywords

Symbolic Data Target Vehicle Steering Wheel Driving Situation Turn Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Saad, F., Villame, T.: Intégration d’un nouveau système d’assistance dans l’activité des conducteurs d’automobile. In Ganascia, J., ed.: Sécurité et cognition, Hermès France (1999) 105–114 chap. 9.Google Scholar
  2. 2.
    Saad, F.: Driver strategies in car-following situations. In et al., A.G., ed.: Vision in Vehicles, Elsevier Science B.V. (1996) 61–70Google Scholar
  3. 3.
    Nigro, J., Loriette-Rougegrez, S.: Characterization of driving situation. In: International Conference on Modelling and Simulation, MS’99, Santiago de Compostela, Spain (1999) 287–297Google Scholar
  4. 4.
    Shawky, M., Crubille, P., Bonnifait, P.: Archiving and indexing of large volume sensor data of an equipped vehicle. In: DriiVE-Driving research in instrumented vehicles workshop, Helsinki, Finland (1999)Google Scholar
  5. 5.
  6. 6.
    Loriette-Rougegrez, S., Nigro, J.M., Jarkass, I.: Rule-based approaches for the recognition of driving maneuvers. In: AISTA’2000 (International Conference on Advances in Intelligent Systems: Theory and Applications), Canberra (Australia) (2000)Google Scholar
  7. 7.
    Giarratano, Riley: Expert systems: Principles and programming. (ISBN 0-534-95053-1)Google Scholar
  8. 8.
  9. 9.
    Shafer, G.: A mathematical theory of evidence. Volume 2702. Princeton University Press (1976)Google Scholar
  10. 10.
    Bouchon-Meunier, B.: La logique floue. In: Que sais-je? Volume 2702. Presse universitaire de France (1993)Google Scholar
  11. 11.
    David, R., Alla, H.: Du Grafcet aux réseaux de Petri. nième edn. Traité des nouvelles technologies. Série automatique. Hermès (1992)Google Scholar
  12. 12.
    Jarkass, I., Rombaut, M.: Reconnaissance de séquences temporelles à l’aide de réseau de petri crédibiliste. In Hermès, ed.: Journal Européen des Systèmes Automatisés (APII-JESA). Volume 32. (1998)Google Scholar
  13. 13.
    Fontaine, D.: Une approche par graphes pour la reconnaissance de scenarios temporels. Revue d’intelligence artificielle 10 (1996) 439–468MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • S. Loriette-Rougegrez
    • 1
  1. 1.Laboratory LM2SUniversity of Technology of TroyesTroyesFrance

Personalised recommendations