A multicontext logic with algebraic structure is proposed, where contexts are either primitive or composed from other contexts. Composition of two contexts can support various intuitions: sequence concatenation, set union, multiset union, etc.

A local models semantics for algebraic context composition is defined, with a corresponding deductive calculus containing multilanguage bridge rules. Soundness and completeness results are proved for the case of semigroups of contexts, i.e. where context composition is an associative operation. Other properties of context composition, besides associativity, are defined by additional algebraic equations.


Integration of Logical Reasoning and Computer Algebra Logic and Symbolic Computing Reasoning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Benerecetti, P. Bouquet, and M. Bonifacio. Distributed context-aware applications. Human Computer Interaction, 16:213–228, 2001. Special issue on Context-aware computing.CrossRefGoogle Scholar
  2. 2.
    M. Benerecetti, P. Bouquet, and C. Ghidini. Contextual reasoning distilled. Journal of Theoretical and Experimental Artificial Intelligence, 2000.Google Scholar
  3. 3.
    Sačsa Buvačc, Vanja Buvačc, and Ian A. Mason. The semantics of propositional contexts. In Proceedings of the Eight International Symposium on Methodologies for Intelligent Systems, volume 869 of Lecture Notes in Artificial Intelligence. Springer Verlag, 1994.Google Scholar
  4. 4.
    Sačsa Buvačc, Vanja Buvačc, and Ian A. Mason. Metamathematics of context. Fundamenta Informaticae, 23(3), 1995.Google Scholar
  5. 5.
    T. Costello and A. Patterson. Quantifiers over contexts. In KR & R, 1998.Google Scholar
  6. 6.
    C. Dichev. Theory relations and context dependencies. In Proceedings of the 6th Australian Joint Conference on Artificial Intelligence (AI-93), pages 266–272, Melbourne, 1993.Google Scholar
  7. 7.
    Dov Gabbay and Rolf Nossum. Structured contexts with fibred semantics. In P. Bonzon, M. Cavalcanti, and R. Nossum, editors, Formal Aspects of Context. Applied Logic Series, Kluwer, 2000.Google Scholar
  8. 8.
    Chiara Ghidini. A Semantics for Contextual Reasoning: Theory and Two Relevant Applications. Ph.d. dissertation, Dipartimento di Informatica e Studî Aziendali, Università degli Studî di Roma “La Sapienza”, Roma, 1998.Google Scholar
  9. 9.
    Fausto Giunchiglia. Contextual reasoning. Epistemologia, special issue on I Lin-guaggi e le Macchine(XVI):345–364, 1993. IRST Technical Report 9211-20, IRST,Trento, Italy.Google Scholar
  10. 10.
    Fausto Giunchiglia and Luciano Serafini. Multilanguage hierarchical logics (or: how we can do without modal logics). Artificial Intelligence, 65:29–70, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Ramanathan Guha and Douglas Lenat. Language, representation and contexts. Journal of Information Processing, 15(3):340–349, 1992.Google Scholar
  12. 12.
    Ramanathan V. Guha. Contexts: A Formalization and Some Applications. PhD thesis, Stanford University, 1991.Google Scholar
  13. 13.
    David Kaplan. Demonstratives: an essay on the semantics, logic, metaphysics, and epistemology of demonstratives and other indexicals. In Joseph Almog, John Perry, and Howard Wettstein, editors, Themes from Kaplan, pages 481–563. Oxford University Press, Oxford, 1989.Google Scholar
  14. 14.
    J. McCarthy and S. Buvačc. Formalising context, (expanded notes). In A. Aliseda, R. van Glabbeek, and D. Westerståhl, editors, Computing Natural Language, volume 81 of CSLI Lecture Notes, pages 13–50. Stanford University, Center for the Study of Language and Information, 1998.Google Scholar
  15. 15.
    Rolf Nossum. A uniform quantificational logic for algebraic notions of context. Skriftserien 82, Agder University College, N-4604 Kristiansand, Dec 2001. ISBN 82-7117-448-7.Google Scholar
  16. 16.
    John Perry. Indexicals, contexts, and unarticulated constituents. In Atocha Aliseda, Rob van Glabbeek, and Dag Westerståhl, editors, Computing Natural Language, pages 1–11. CSLI Publications, Stanford, California, 1998.Google Scholar
  17. 17.
    Luciano Serafini and Chiara Ghidini. Context-based semantics for information integration. In Pierre Bonzon, Marcos Cavalcanti, and Rolf Nossum, editors, Formal Aspects of Context, pages 175–192. Kluwer Academic Publishers, Dordrecht, 2000.Google Scholar
  18. 18.
    Luciano Serafini and Fausto Giunchiglia. ML systems: A proof theory for contexts. Journal of Logic, Language and Information, July 2001.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Rolf Nossum
    • 1
  • Luciano Serafini
    • 2
  1. 1.Department of MathematicsAgder University CollegeKristiansandNorway
  2. 2.ITC-IRSTCentro per la Ricerca Scientifica e TecnologicaPovoItaly

Personalised recommendations