Classification-Driven Pathological Neuroimage Retrieval Using Statistical Asymmetry Measures

  • Y. Liu
  • F. Dellaert
  • W. E. Rothfus
  • A. Moore
  • J. Schneider
  • T. Kanade
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2208)

Abstract

This paper reports our methodology and initial results on volumetric pathological neuroimage retrieval. A set of novel image features are computed to quantify the statistical distributions of approximate bilateral asymmetry of normal and pathological human brains. We apply memory-based learning method to findt he most-discriminative feature subset through image classification according to predefined semantic categories. Finally, this selected feature subset is used as indexing features to retrieve medically similar images under a semantic-based image retrieval framework. Quantitative evaluations are provided.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, 1995. ISBN:0198538499.Google Scholar
  2. 2.
    C. Davatzikos, M. Vaillant, S. Resnick, J.L. Prince, S. Letovsky, and R.N. Bryan. A computerized approach for morphological analysis of the corpus callosum. Comp. Ass. Tomography., 20:88–97, Jan./Feb. 1996.CrossRefGoogle Scholar
  3. 3.
    L. Devroye, L. Györ., and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer-Verlag, London, Paris, Tokyo, 1997.Google Scholar
  4. 4.
    R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. John Wiley & Sons, New York, 2001.MATHGoogle Scholar
  5. 5.
    J.S. Duncan and N. Ayache. Medical image analysis: Progress over two decades and the challenges ahead. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1):85,106, 2000.CrossRefGoogle Scholar
  6. 6.
    D. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic, and W. Equitz. Efficient and effective querying by image content. Journal of Intelligent Information Systems, 1994.Google Scholar
  7. 7.
    R. Guillemaud, M. Sakuma, P. Marais, J. Feldmar, R. Crow, L. DeLisi, A. Zisserman, and M. Brady. Cerebral symmetry analysis from mri scans. Submitted to Psychiatry Research Neuroimaging, 1998.Google Scholar
  8. 8.
    D. L. G. Hill, P.G. Batchelor, M. Holden, and D. J. Hawkes. Medical image registration. Physics in Medicine and Biology, 46:1–45, 2001.Google Scholar
  9. 9.
    Y. Liu, R.T. Collins, and W.E. Rothfus. Robust Midsagittal Plane Extraction from Normal andPat hological 3D Neuroradiology Images. IEEE Transactions on Medical Imaging, 20(3), March 2001.Google Scholar
  10. 10.
    Y. Liu, T. Zhao, E.S. Wachman, D.L. Farkas, and T. Kanade. Learning discriminant features in multispectrual biological images. In Mathematical Methods in Biomedical Image Analysis. submitted, 2001.Google Scholar
  11. 11.
    F. Maes, A. Collignon, D. Vandermeulun, G. Marchal, and P. Suetens. Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging, 16(2):187,198, 1997.CrossRefGoogle Scholar
  12. 12.
    A. W. Moore, D. J. Hill, and M. P. Johnson. An Empirical Investigation of Brute Force to choose Features, Smoothers and Function Approximators. In S. Hanson, S. Judd, and T. Petsche, editors, Computational Learning Theory and Natural Learning Systems, Volume 3. MIT Press, 1994.Google Scholar
  13. 13.
    A. Pentland, R.W. Picard, and S. Sclaroff. Photobook: Content-based manipulation of image databases. IJCV, 18(3):233–254, June 1996.CrossRefGoogle Scholar
  14. 14.
    J. Schneider and A.W. Moore. A locally weighted learning tutorial using vizier 1.0. tech. report CMU-RI-TR-00-18, Robotics Institute, Carnegie Mellon, 1997.Google Scholar
  15. 15.
    P.M. Thompson, C. Schwartz, and A.W. Toga. High-resolution random mesh algorithms for creating a probabilistic 3d surface atlas of the human brain. Neuroimage, 3(1):19–34, Feb 1996.CrossRefGoogle Scholar
  16. 16.
    J. West, M. Fitzpatrick, and et al. Comparison and evaluation of retrospective intermodality brain image registration techniques. Journal of Computer Assisted Tomography, 21:554–566, July/August 1997.CrossRefGoogle Scholar
  17. 17.
    W. Zhang, S. Sclaroff, S. Dickinson, J. Feldman, and S. Dunn. Shape-based indexing in a medical image database. Workshop on Biomedical Image Analysis, pages 221–230, June 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Y. Liu
    • 1
  • F. Dellaert
    • 1
  • W. E. Rothfus
    • 2
  • A. Moore
    • 1
  • J. Schneider
    • 1
  • T. Kanade
    • 1
  1. 1.The Robotics InstituteCarnegie Mellon UniversityPittsburghUSA
  2. 2.University of Pittsburgh Medical CenterPittsburgh

Personalised recommendations