Phase-Based User-Steered Image Segmentation

  • Lauren O’Donnell
  • Carl-Fredrik Westin
  • W. Eric L. Grimson
  • Juan Ruiz-Alzola
  • Martha E. Shenton
  • Ron Kikinis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2208)


This paper presents a user-steered segmentation algorithm based on the livewire paradigm. Livewire is an image-feature driven method that finds the optimal path between user-selected image locations, thus reducing the need to manually define the complete boundary. We introduce an image feature based on local phase, which describes local edge symmetry independent of absolute gray value. Because phase is amplitude invariant, the measurements are robust with respect to smooth variations, such as bias field inhomogeneities present in all MR images. In order to enable validation of our segmentation method, we have created a system that continuously records user interaction and automatically generates a database containing the number of user interactions, such as mouse events, and time stamps from various editing modules. We have conducted validation trials of the system and obtained expert opinions regarding its functionality.


Segmentation Method User Interaction Instantaneous Frequency Weighted Graph Manual Segmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    W. A. Barrett and E. N. Mortensen. Interactive live-wire boundary extraction. Medical Image Analysis, 1(4):331–341, 1997.CrossRefGoogle Scholar
  2. 2.
    Boualem Boashash. Estimating and interpreting the instantaneous frequency of a signal — part 1: Fundamentals. Proceedings of the IEEE, 80(4), 1992.Google Scholar
  3. 3.
    Boualem Boashash. Estimating and interpreting the instantaneous frequency of a signal — part 2: Algorithms and applications. Proceedings of the IEEE, 80(4), 1992.Google Scholar
  4. 4.
    V. Caselles, R. Kimmel, G. Sapiro, C. Sbert. Minimal Surfaces: A Three Dimensional Segmentation Approach. Technion EE Pub 973, 1995.Google Scholar
  5. 5.
    E. W. Dijkstra A Note On Two Problems in Connexion With Graphs Numerische Mathematik, 269–271, 1959.Google Scholar
  6. 6.
    A. X. Falcao, J. K. Udupa, and F. K. Miyazawa. An Ultra-Fast User-Steered Image Segmentation Paradigm: Live Wire on the Fly. IEEE Transactions on Medical Imaging, 19(1):55–61, 2000.CrossRefGoogle Scholar
  7. 7.
    A. X. Falcao, J. K. Udupa, S. Samarasekera, and S. Sharma. User-Steered Image Segmentation Paradigms: Live Wire and Live Lane. Graphical Models and Image Processing, 60:233–260, 1998.CrossRefGoogle Scholar
  8. 8.
    D. J. Fleet and A. D. Jepson. Stability of Phase Information IEEE Trans. PAMI, 15(12):1253–1268, 1993.Google Scholar
  9. 9.
    D. T. Gering, A. Nabavi, R. Kikinis, W. E. L. Grimson, N. Hata, P. Everett, and F. Jolesz and W. Wells. An Integrated Visualization System for Surgical Planning and Guidance Using Image Fusion and Interventional Imaging. Medical Image Computing and Computer-Assisted Intervention-MICCAI’99, 809–819, 1999.Google Scholar
  10. 10.
    H. Knutsson and C.-F. Westin and G. H. Granlund. Local Multiscale Frequency and Bandwidth Estimation Proceedings of IEEE International Conference on Image Processing, 36–40, 1994.Google Scholar
  11. 11.
    T. McInerney, D. Terzopoulos. Deformable Models in Medical Image Analysis: A Survey. Medical Image Analysis, 1(2):91–108, 1996.CrossRefGoogle Scholar
  12. 12.
    E. N. Mortensen and W. A. Barrett. Interactive Segmentation with Intelligent Scissors. Graphical Models and Image Processing, 60(5):349–384, 1998.zbMATHCrossRefGoogle Scholar
  13. 13.
    E. N. Mortensen and W. A. Barrett. Intelligent Scissors for Image Composition. Computer Graphics (SIGGRAPH’ 95), 191–198, 1995.Google Scholar
  14. 14.
    W. M. Wells, R. Kikinis, W.E.L. Grimson, F. Jolesz. Adaptive segmentation of MRI data. IEEE Transactions on Medical Imaging, 15:429–442, 1996.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Lauren O’Donnell
    • 1
  • Carl-Fredrik Westin
    • 1
    • 2
  • W. Eric L. Grimson
    • 1
  • Juan Ruiz-Alzola
    • 3
  • Martha E. Shenton
    • 2
  • Ron Kikinis
    • 2
  1. 1.MIT AI LaboratoryCambridgeUSA
  2. 2.Brigham and Women’s HospitalHarvard Medical SchoolUSA
  3. 3.Dept. of Signals and CommunicationsUniversity of Las Palmas de Gran CanariaSpain

Personalised recommendations