Non-linear Local Registration of Functional Data

  • Isabelle Corouge
  • Christian Barillot
  • Pierre Hellier
  • Pierre Toulouse
  • Bernard Gibaud
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2208)


Within the scope of three-dimensional brain imaging we propose an inter-individual fusion scheme to register functional activations relatively to anatomical cortical structures, the sulci. This approach is local and non-linear. It relies on a statistical sulci shape model accounting for the inter-individual variability of a population of subjects, and providing deformation modes relatively to a reference shape (a mean sulcus). The deformation field obtained between a given sulcus and the reference sulcus is extended to a neighborhood of the given sulcus by using the thin-plate spline interpolation. It is then applied to the functional activations associated with this sulcus. This approach is compared with other classical matching methods.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McInerney, T., Terzopoulos, D.: Deformable Models in Medical Image Analysis: A Survey. Medical Image Analysis, 1(2):91–108 (1996).CrossRefGoogle Scholar
  2. 2.
    Subsol, G., Thirion, J.P., Ayache, N.: A General Scheme for Automatically Building 3D Morphometric Anatomical Atlases: Application to a Skull Atlas. MedIA, 2(1):37–60 (1998).Google Scholar
  3. 3.
    Martin, J., Pentland, A., Sclaroff, S., Kikinis, R.: Characterization of Neuropathological Shape Deformations. IEEE Trans. on PAMI, 20(2):97–112 (1998).Google Scholar
  4. 4.
    Kervrann, C., Heitz, F.: A Hierarchical Statistical Framework for the Segmentation of Deformable Objects in Image Sequences. IEEE CVPR, 724–728 (1994).Google Scholar
  5. 5.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active Shape Models — their training and application. CVIU, 61(1):38–59 (1995).Google Scholar
  6. 6.
    Bookstein, F.: Principal Warps: Thin-plate splines and the decomposition of deformations. IEEE Trans. on PAMI, 11(6):567–585 (1989).Google Scholar
  7. 7.
    Bookstein, F.L., Green, D.K.: A Feature Space for Derivatives of Deformations. IPMI, LNCS, 687:1–16 (1993).Google Scholar
  8. 8.
    Le Goualher, G., Barillot, C., Bizais, Y.: Modeling Cortical Sulci with Active Ribbons. IJPRAI, 8(11):1295–1315 (1997).Google Scholar
  9. 9.
    Collignon, A., Vandermeulen, D., Suetens, P., Marchal, G.: 3D Multi-Modality Medical Image Registration using Feature Space Clustering. CVRMed, 195–204 (1995).Google Scholar
  10. 10.
    Viola, P., Wells, W.: Alignment by Maximization of Mutual Information. Proc. Int. Conf. Computer Vision, 15–23 (1995).Google Scholar
  11. 11.
    Talairach, J., Tournoux, P.: Co-planar Stereotaxic Atlas of the Human Brain. Georg Thieme Verlag, Stuttgart (1988).Google Scholar
  12. 12.
    Hellier, P., Barillot, C., Mémin, E., Pérez, P.: An energy-based framework for dense 3D registration of volumetric brain image. IEEE CVPR, 2:270–275 (2000).Google Scholar
  13. 13.
    Schwartz, D., Badier, J.M., Bihoué, P., Bouliou, A.: Evaluation with realistic sources of a new MEG-EEG spatio-temporal localization approach. Brain Topography, 11(4):279–289 (1999).CrossRefGoogle Scholar
  14. 14.
    Collins, L., Le Goualher, G., Venugopal, R., Caramanos, A., Evans, A., Barillot, C.: Cortical Constraints for Non-linear Cortical Registration. VBC, LNCS, 1131:307–316 (1996).Google Scholar
  15. 15.
    Hellier, P., Barillot, C.: Cooperation Between Local and Global Approaches to Register Brain Images. IPMI, LNCS, 2082:315–328 (2001).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Isabelle Corouge
    • 1
  • Christian Barillot
    • 1
  • Pierre Hellier
    • 1
  • Pierre Toulouse
    • 2
  • Bernard Gibaud
    • 2
  1. 1.IRISA, INRIA-CNRSCampus de BeaulieuRennes CxFrance
  2. 2.IDM laboratory, Faculty of MedicineUniversity of Rennes IRennes CxFrance

Personalised recommendations