Non-linear Local Registration of Functional Data

  • Isabelle Corouge
  • Christian Barillot
  • Pierre Hellier
  • Pierre Toulouse
  • Bernard Gibaud
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2208)


Within the scope of three-dimensional brain imaging we propose an inter-individual fusion scheme to register functional activations relatively to anatomical cortical structures, the sulci. This approach is local and non-linear. It relies on a statistical sulci shape model accounting for the inter-individual variability of a population of subjects, and providing deformation modes relatively to a reference shape (a mean sulcus). The deformation field obtained between a given sulcus and the reference sulcus is extended to a neighborhood of the given sulcus by using the thin-plate spline interpolation. It is then applied to the functional activations associated with this sulcus. This approach is compared with other classical matching methods.




  1. 1.
    McInerney, T., Terzopoulos, D.: Deformable Models in Medical Image Analysis: A Survey. Medical Image Analysis, 1(2):91–108 (1996).CrossRefGoogle Scholar
  2. 2.
    Subsol, G., Thirion, J.P., Ayache, N.: A General Scheme for Automatically Building 3D Morphometric Anatomical Atlases: Application to a Skull Atlas. MedIA, 2(1):37–60 (1998).Google Scholar
  3. 3.
    Martin, J., Pentland, A., Sclaroff, S., Kikinis, R.: Characterization of Neuropathological Shape Deformations. IEEE Trans. on PAMI, 20(2):97–112 (1998).Google Scholar
  4. 4.
    Kervrann, C., Heitz, F.: A Hierarchical Statistical Framework for the Segmentation of Deformable Objects in Image Sequences. IEEE CVPR, 724–728 (1994).Google Scholar
  5. 5.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active Shape Models — their training and application. CVIU, 61(1):38–59 (1995).Google Scholar
  6. 6.
    Bookstein, F.: Principal Warps: Thin-plate splines and the decomposition of deformations. IEEE Trans. on PAMI, 11(6):567–585 (1989).Google Scholar
  7. 7.
    Bookstein, F.L., Green, D.K.: A Feature Space for Derivatives of Deformations. IPMI, LNCS, 687:1–16 (1993).Google Scholar
  8. 8.
    Le Goualher, G., Barillot, C., Bizais, Y.: Modeling Cortical Sulci with Active Ribbons. IJPRAI, 8(11):1295–1315 (1997).Google Scholar
  9. 9.
    Collignon, A., Vandermeulen, D., Suetens, P., Marchal, G.: 3D Multi-Modality Medical Image Registration using Feature Space Clustering. CVRMed, 195–204 (1995).Google Scholar
  10. 10.
    Viola, P., Wells, W.: Alignment by Maximization of Mutual Information. Proc. Int. Conf. Computer Vision, 15–23 (1995).Google Scholar
  11. 11.
    Talairach, J., Tournoux, P.: Co-planar Stereotaxic Atlas of the Human Brain. Georg Thieme Verlag, Stuttgart (1988).Google Scholar
  12. 12.
    Hellier, P., Barillot, C., Mémin, E., Pérez, P.: An energy-based framework for dense 3D registration of volumetric brain image. IEEE CVPR, 2:270–275 (2000).Google Scholar
  13. 13.
    Schwartz, D., Badier, J.M., Bihoué, P., Bouliou, A.: Evaluation with realistic sources of a new MEG-EEG spatio-temporal localization approach. Brain Topography, 11(4):279–289 (1999).CrossRefGoogle Scholar
  14. 14.
    Collins, L., Le Goualher, G., Venugopal, R., Caramanos, A., Evans, A., Barillot, C.: Cortical Constraints for Non-linear Cortical Registration. VBC, LNCS, 1131:307–316 (1996).Google Scholar
  15. 15.
    Hellier, P., Barillot, C.: Cooperation Between Local and Global Approaches to Register Brain Images. IPMI, LNCS, 2082:315–328 (2001).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Isabelle Corouge
    • 1
  • Christian Barillot
    • 1
  • Pierre Hellier
    • 1
  • Pierre Toulouse
    • 2
  • Bernard Gibaud
    • 2
  1. 1.IRISA, INRIA-CNRSCampus de BeaulieuRennes CxFrance
  2. 2.IDM laboratory, Faculty of MedicineUniversity of Rennes IRennes CxFrance

Personalised recommendations