Infinite-State High-Level MSCs: Model-Checking and Realizability

Extended Abstract
  • Blaise Genest
  • Anca Muscholl
  • Helmut Seidl
  • Marc Zeitoun
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2380)


We consider three natural classes of infinite-state HMSCs: globally-cooperative, locally-cooperative and local-choice HMSCs. We show first that model-checking for globally-cooperative and locally-cooperative HMSCs has the same complexity as for the class of finite-state (bounded) HMSCs. Surprisingly, model-checking local-choice HMSCs turns out to be exponentially more efficient in space than for locally-cooperative HMSCs. We also show that locally-cooperative and local-choice HMSCs can be always implemented by communicating finite states machines, provided we allow some additional (bounded) message data. Moreover, the implementation of local-choice HMSCs is deadlock-free and of linear-size.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ITU-TS recommendation Z.120, 1996.Google Scholar
  2. 2.
    R. Alur, K. Etessami, and M. Yannakakis. Inference of message sequence charts. In 22nd Int. Conf. on Software Engineering, pages 304–313. ACM, 2000.Google Scholar
  3. 3.
    R. Alur, K. Etessami, and M. Yannakakis. Realizability and verification of MSC graphs. In ICALP’01, LNCS 2076, pages 797–808, 2001.Google Scholar
  4. 4.
    R. Alur, G. H. Holzmann, and D. A. Peled. An analyzer for message sequence charts. Software Concepts and Tools, 17(2):70–77, 1996.zbMATHGoogle Scholar
  5. 5.
    R. Alur and M. Yannakakis. Model checking of message sequence charts. In CONCUR’99, LNCS 1664, pages 114–129, 1999.Google Scholar
  6. 6.
    D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of the ACM, 30(2):323–342, 1983.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    B. Caillaud, P. Darondeau, L. Hélouët, and G. Lesventes. HMSCs as partial specifications... with PNs as completions. In MOVEP, 2000.Google Scholar
  8. 8.
    L. Hélouët and C. Jard. Conditions for synthesis of communicating automata from HMSCs. In 5th Int. Workshop on Formal Methods for Ind. Crit. Systems, 2000.Google Scholar
  9. 9.
    L. Hélouët and P. Le Maigat. Decomposition of Message Sequence Charts. In SAM2000, pages 46–60, 2000.Google Scholar
  10. 10.
    J. G. Henriksen, M. Mukund, K. Narayan Kumar, and P. Thiagarajan. On message sequence graphs and finitely generated regular msc languages. In ICALP’00, LNCS 1853, pages 675–686, 2000.Google Scholar
  11. 11.
    Y. Métivier. On recognizable subsets of free partially commutative monoids. Theoretical Computer Science, 58:201–208, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    R. Morin. Recognizable Sets of Message Sequence Charts. In STACS’02, LNCS 2285, pages 523–534, 2002.Google Scholar
  13. 13.
    M. Mukund, K. Narayan Kumar, and M. Sohoni. Synthesizing distributed finite-state systems from MSCs. In CONCUR’00, LNCS 1877, pages 521–535, 2000.Google Scholar
  14. 14.
    A. Muscholl and D. Peled. Message sequence graphs and decision problems on Mazurkiewicz traces. In MFCS’99, LNCS 1672, pages 81–91, 1999.Google Scholar
  15. 15.
    E. Ochmański. Recognizable trace languages. In The Book of Traces, chapter 6, pages 167–204. World Scientific, Singapore, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Blaise Genest
    • 1
  • Anca Muscholl
    • 1
  • Helmut Seidl
    • 2
  • Marc Zeitoun
    • 1
  1. 1.LIAFAUniversité Paris VIIParis cedex 05France
  2. 2.FB IVUniversität TrierTrierGermany

Personalised recommendations