Advertisement

Spanning Trees with Bounded Number of Branch Vertices

  • Luisa Gargano
  • Pavol Hell
  • Ladislav Stacho
  • Ugo Vaccaro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2380)

Abstract

We introduce the following combinatorial optimization problem: Given a connected graph G, find a spanning tree T of G with the smallest number of branch vertices (vertices of degree 3 or more in T). The problem is motivated by new technologies in the realm of optical networks. We investigate algorithmic and combinatorial aspects of the problem.

Keywords

Span Tree Connected Graph Optical Network Polynomial Time Algorithm Longe Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Ali, Transmission Efficient Design and Management of Wavelength-Routed Optical Networks, Kluwer Academic Publishing, 2001.Google Scholar
  2. 2.
    C. Bazgan, M. Shanta, Z. Tuza, “On the Approximability of Finding A(nother) Hamiltonian Cycle in Cubic Hamiltonian Graphs”, Proc. 15th Annual Symposium on Theoretical Aspects of Computer Science, LNCS, Vol. 1373, 276–286, Springer, (1998).Google Scholar
  3. 3.
    B. Beauquier, J-C. Bermond, L. Gargano, P. Hell, S. Perennes, U. Vaccaro, “Graph Problems arising from Wavelength-Routing in All-Optical Networks”, Proc. of WOCS, Geneve, Switzerland, 1997.Google Scholar
  4. 4.
    G. Chen, R. H. Schelp, “Hamiltonicity for K1, r-free graphs”, J. Graph Th., 20, 423–439, 1995.CrossRefGoogle Scholar
  5. 5.
    V. Chvátal, P. Erdős. “A note on Hamiltonian circuits”, Discr. Math., 2:111–113, 1972.zbMATHCrossRefGoogle Scholar
  6. 6.
    G. A. Dirac, “Some theorems on abstract graphs”, Proc. London Math. Soc. 2:69–81, 1952.CrossRefMathSciNetGoogle Scholar
  7. 7.
    T. Feder, R. Motwani, C. Subi, “Finding Long Paths and Cycles in Sparse Hamiltonian Graphs”, Proc. Thirty second annual ACM Symposium on Theory of Computing (STOC’00) Portland, Oregon, May 21–23, 524–529, ACM Press, 2000.Google Scholar
  8. 8.
    L. Gargano, U. Vaccaro, “Routing in All-Optical Networks: Algorithmic and Graph-Theoretic Problems”, in: Numbers, Information and Complexity, I. Al-thofer et al. (Eds.), Kluwer Academic Publisher, pp. 555–578, Feb. 2000.Google Scholar
  9. 9.
    R. J. Gould. Updating the Hamiltonian problem—a survey. J. Graph Theory, 15(2):121–157, 1991.zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    R. M. Karp, “Reducibility among combinatorial problems”, Complexity of Computer Computations, R.E. Miller and J.W. Thatcher (eds.), Plenum Press, (1972), 85–103.Google Scholar
  11. 11.
    S. Khuller, B. Raghavachari, N. Young, “Low degree spanning trees of small weight”, SIAM J. Comp., 25 (1996), 335–368.MathSciNetGoogle Scholar
  12. 12.
    J. Könemann, R. Ravi, “A Matter of Degree: Improved Approximation Algorithms for Degree-Bounded Minimum Spanning Trees”, Proc. Thirty second annual ACM Symp. on Theory of Computing (STOC’00), Portland, Oregon, 537–546, (2000).Google Scholar
  13. 13.
    D. Krager, R. Motwani, D.S. Ramkumar, “On Approximating the Longest Path in a Graph”, Algorithmica, 18 (1997), 82–98.CrossRefMathSciNetGoogle Scholar
  14. 14.
    A. Kyaw, “A Sufficient Condition for a Graph to have a k Tree”, Graphs and Combinatorics, 17: 113–121, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    M. Las Vergnas, “Sur une proprieté des arbres maximaux dans un graphe”, Compte Rendus Acad. Sc. Paris, 271, serie A, 1297–1300, 1971.Google Scholar
  16. 16.
    Y. Liu, F. Tian, and Z. Wu, “Some results on longest paths and cycles in K1,3-free graphs”, J. Changsha Railway Inst., 4:105–106, 1986.Google Scholar
  17. 17.
    L. R. Markus. Hamiltonian results in K1, r-free graphs. In Proc. of the Twenty-fourth Southeastern International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton,FL, 1993), volume 98, pages 143–149, 1993.zbMATHMathSciNetGoogle Scholar
  18. 18.
    M. M. Matthews, D. P. Sumner. Longest paths and cycles in K1,3-free graphs. J. Graph Theory, 9(2):269–277, 1985.zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    B. Mukherjee, Optical Communication Networks, McGraw-Hill, New York, 1997.Google Scholar
  20. 20.
    V. Neumann Lara, E. Rivera-Campo, “Spanning trees with bounded degrees”, Combinatorica, 11(1):55–61, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    O. Ore. Note on Hamilton circuits. Amer. Math. Monthly, 67:55, 1960.CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    B. Raghavari, “Algorithms for finding low-degree structures”, in: Approximation Algorithms for NP-Hard Problems, D.S. Hochbaum (Ed.) PWS Publishing Company, Boston, 266–295, 1997.Google Scholar
  23. 23.
    L. Sahasrabuddhe, N. Singhal, B. Mukherjee, “Light-Trees for WDM Optical Networks: Optimization Problem Formulations for Unicast and Broadcast Traffic,“ Proc. Int. Conf. on Communications, Computers, and Devices (ICCD-2000), IIT Kharagpur, India, (2000).Google Scholar
  24. 24.
    L. H. Sahasrabuddhe, B. Mukherjee, “Light Trees: Optical Multicasting for Improved Performance in Wavelength-Routed Networks“, IEEE Comm. Mag., 37: 67–73, 1999.CrossRefGoogle Scholar
  25. 25.
    T.E. Sterne, K. Bala, MultiWavelength Optical Networks, Addison-Wesley, 1999.Google Scholar
  26. 26.
    C. Thomassen, “Hypohamiltonian and hypotraceable graphs”, Disc. Math., 9(1974), 91–96.zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    C. Thomassen, “Planar cubic hypo-Hamiltonian and hypotraceable graphs”, J. Combin. Theory Ser. B, 30(1), 36–44, 1981.zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Y. Wang, Y. Yang, “Multicasting in a Class of Multicast—Capable WDM Networks”, Journal of Lightwave Technology, 20 (2002), 350–359.CrossRefGoogle Scholar
  29. 29.
    S. Win, “Existenz von Gerüsten mit vorgeschriebenem Maximalgrad in Graphen”, Abh. Mat. Sem. Univ. Hamburg, 43: 263–267, 1975.zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    X. Zhang, J. Wei, C. Qiao, “Costrained Multicast Routing in WDM Networks with Sparse Light Splitting”, Proc. of IEEE INFOCOM 2000, vol. 3: 1781–1790, Mar. 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Luisa Gargano
    • 1
  • Pavol Hell
    • 2
  • Ladislav Stacho
    • 2
  • Ugo Vaccaro
    • 1
  1. 1.Dipartimento di Informatica ed ApplicazioniUniversità di SalernoBaronissiItaly
  2. 2.School of Computing ScienceSimon Fraser UniversityBurnabyCanada

Personalised recommendations