A Survey of Discriminant Counting

  • Henri Cohen
  • Francisco Diaz y Diaz
  • Michel Olivier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2369)

Abstract

We give a survey of known results on the asymptotic and exact enumeration of discriminants of number fields, both in the absolute and relative case. We give no proofs, and refer instead to the bibliography.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Baily, On the density of discriminants of quartic fields, J. reine angew. Math. 315 (1980), 190–210.MATHMathSciNetGoogle Scholar
  2. 2.
    K. Belabas, A fast algorithm to compute cubic fields, Math. Comp. 66 (1997), 1213–1237.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    K. Belabas, On the mean 3-rank of quadratic fields, Compositio Math. 118 (1999), 1–9.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    M. Bhargava, Higher composition laws, PhD Thesis, Princeton Univ., June 2001.Google Scholar
  5. 5.
    M. Bhargava, Gauss Composition and Generalizations, this volume.Google Scholar
  6. 6.
    H. Cohen, Advanced topics in computational number theory, GTM 193, Springer-Verlag, 2000.Google Scholar
  7. 7.
    H. Cohen, Comptage exact de discriminants d’extensions abéliennes, J. Th. Nombres Bordeaux 12 (2000), 379–397.MATHGoogle Scholar
  8. 8.
    H. Cohen, Enumerating quartic dihedral extensions of ℚ with signatures, 32p., submitted.Google Scholar
  9. 9.
    H. Cohen, High precision computation of Hardy—Littlewood constants, preprint available on the author’s web page.Google Scholar
  10. 10.
    H. Cohen, F. Diaz y Diaz and M. Olivier, Densit’e des discriminants des extensions cycliques de degré premier, C. R. Acad. Sci. Paris 330 (2000), 61–66.MATHGoogle Scholar
  11. 11.
    H. Cohen, F. Diaz y Diaz and M. Olivier, Construction of tables of quartic fields using Kummer theory, Proceedings ANTS IV, Leiden (2000), Lecture Notes in Computer Science 1838, Springer-Verlag, 257–268.Google Scholar
  12. 12.
    H. Cohen, F. Diaz y Diaz and M. Olivier, Counting discriminants of number fields of degree up to four, proceedings ANTS IV, Leiden (2000), Lecture Notes in Comp. Sci., 1838, Springer-Verlag (2000), 269–283.Google Scholar
  13. 13.
    H. Cohen, F. Diaz y Diaz and M. Olivier, Counting discriminants of number fields, MSRI preprint 2000-026 (2000), 9p, available on the MSRI www server.Google Scholar
  14. 14.
    H. Cohen, F. Diaz y Diaz and M. Olivier, Enumerating quartic dihedral extensions, Compositio Math., 28p., to appear.Google Scholar
  15. 15.
    H. Cohen, F. Diaz y Diaz and M. Olivier, Constructing complete tables of quartic fields using Kummer theory, Math. Comp., 11p., to appear.Google Scholar
  16. 16.
    H. Cohen, F. Diaz y Diaz and M. Olivier, On the density of discriminants of cyclic extensions of prime degree, J. reine und angew. Math., 40p., to appear.Google Scholar
  17. 17.
    H. Cohen, F. Diaz y Diaz and M. Olivier, Cyclotomic extensions of number fields, 14p., submitted.Google Scholar
  18. 18.
    H. Cohen, F. Diaz y Diaz and M. Olivier, Counting discriminants of number fields, 36p., submitted.Google Scholar
  19. 19.
    H. Cohen, F. Diaz y Diaz and M. Olivier, Counting cyclic quartic extensions of a number field, 30p., submitted.Google Scholar
  20. 20.
    H. Cohen, F. Diaz y Diaz and M. Olivier, Counting biquadratic extensions of a number field, 17p., submitted.Google Scholar
  21. 21.
    H. Cohen, F. Diaz y Diaz and M. Olivier, Counting A 4 and S 4 extensions of number fields, 20p., in preparation.Google Scholar
  22. 22.
    H. Cohn, The density of abelian cubic fields, Proc. Amer. Math. Soc. 5 (1954), 476–477.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    B. Datskovsky and D. J. Wright, Density of discriminants of cubic extensions, J. reine angew. Math. 386 (1988), 116–138.MATHMathSciNetGoogle Scholar
  24. 24.
    H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields I, Bull. London Math. Soc. 1 (1969), 345–348.MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields II, Proc. Royal. Soc. A 322 (1971), 405–420.MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    J. Klüners and G. Malle, Counting Nilpotent Galois Extensions, submitted.Google Scholar
  27. 27.
    S. Mäki, On the density of abelian number fields, Thesis, Helsinki, 1985.Google Scholar
  28. 28.
    S. Mäki, The conductor density of abelian number fields, J. London Math. Soc. (2) 47 (1993), 18–30.MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    G. Malle, On the distribution of Galois groups, J. Number Theory, to appear.Google Scholar
  30. 30.
    D. Roberts, Density of cubic field discriminants, Math. Comp. (2001), 1699–1705.Google Scholar
  31. 31.
    T. Shintani, On Dirichlet series whose coefficients are class numbers of integral binary cubic forms, J. Math. Soc. Japan 24 (1972), 132–188.MATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    T. Shintani, On zeta-functions associated with the vector space of quadratic forms, J. Fac. Sci. Univ. Tokyo, Sec. 1a 22 (1975), 25–66.MATHMathSciNetGoogle Scholar
  33. 33.
    G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Cours Spécialisés SMF 1, Société Mathématique de France, 1995.Google Scholar
  34. 34.
    D. J. Wright, Distribution of discriminants of Abelian extensions, Proc. London Math. Soc. (3) 58 (1989), 17–50.MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    D. J. Wright and A. Yukie, Prehomogeneous vector spaces and field extensions, Invent. Math. 110 (1992), 283–314.MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    A. Yukie, Density theorems related to prehomogeneous vector spaces, preprint.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Henri Cohen
    • 1
  • Francisco Diaz y Diaz
    • 1
  • Michel Olivier
    • 1
  1. 1.Laboratoire A2X, U.M.R. 5465 du C.N.R.S.Université Bordeaux ITalence CedexFrance

Personalised recommendations