Advertisement

On Arithmetically Equivalent Number Fields of Small Degree

  • Wieb Bosma
  • Bart de Smit
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2369)

Abstract

For each integer n, let \( \mathcal{S}_n \) be the set of all class number quotients h(K)/h(K) for number fields K and K of degree n with the same zeta-function. In this note we will give some explicit results on the finite sets \( \mathcal{S}_n \) , for small n. For example, for every x\( \mathcal{S}_n \) with n ≤ 15, x or x -1 is an integer that is a prime power dividing 214.36.53.

Keywords

Simple Group Galois Group Brute Force Class Number Equivalent Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wieb Bosma, Bart de Smit, Class number relations from a computational point of view, J. Symbolic Computation 31 (2001), 97–112.zbMATHCrossRefGoogle Scholar
  2. 2.
    G. Butler, The transitive groups of degree fourteen and fifteen, J. Symbolic Computation 16 (1993), 413–422.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    G. Butler, J. McKay, The transitive groups of degree up to eleven, Comm. Algebra 11 (1983), 863–911.zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    J.W.S. Cassels, A. Fröhlich (eds), Algebraic Number Theory, Academic Press (1986) (reprint).Google Scholar
  5. 5.
    B. de Smit, Generating arithmetically equivalent number fields with elliptic curves, in: J.P. Buhler (Ed.), Algorithmic Number Theory (Proceedings ANTS III), Lecture Notes in Computer Science, Vol. 1423. Springer-Verlag, Berlin (1998), 392–399.CrossRefGoogle Scholar
  6. 6.
    B. de Smit, Brauer-Kuroda relations for S-class numbers, Acta Arithmetica 98 (2001), 133–146.zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    B. de Smit, H. W. Lenstra, Jr., Linearly equivalent actions of solvable groups, J. Algebra 228 (2000), 270–285.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    B. de Smit and R. Perlis, Zeta functions do not determine class numbers, Bull. Amer. Math. Soc. 31 (1994), 213–215.zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    L. E. Dickson, Linear groups with an exposition of the Galois Field Theory, Dover (1958), reprint of 1901 original.Google Scholar
  10. 10.
    G. Dyer, Two arithmetically equivalent number fields with class number quotient five, preprint, 1999, Mathematical Research Experiences for Undergraduates at Louisiana State University, LEQS.Google Scholar
  11. 11.
    W. Feit, Some consequences of the classification of finite simple groups, in: B. Cooperstein and G. Mason (eds.), The Santa Cruz conference on finite groups 1979 Proc. Sympos. Pure Math. Vol. 37, Amer. Math. Soc., Providence (1980), 175–181.Google Scholar
  12. 12.
    F. Gassmann, Bemerkungen zu der vorstehnden Arbeit von Hurwitz, (‘Über Beziehungen zwischen den Primidealen eines algebraischen Körpers und den Substitutionen seiner Gruppe’), Math. Z. 25 (1926), 124–143.Google Scholar
  13. 13.
    R. M. Guralnick, Subgroups inducing the same permutation representation, J. Algebra 81 (1983), 312–319.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    R. M. Guralnick and D.B. Wales, Subgroups inducing the same permutation representation, II, J. Algebra 96 (1985), 94–113.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    S.E. LaMacchia, Polynomials with Galois group PSL(2,7), Comm. Algebra 8 (1980), 983–992.zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    R. Perlis, On the equation ζK(s) = ζK(s), J. Number Theory 9 (1977), 342–360.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    G.F. Royle, The transitive groups of degree twelve, J. Symbolic Computation 4 (1987), 255–268.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Wieb Bosma
    • 1
  • Bart de Smit
    • 2
  1. 1.Mathematisch InstituutUniversiteit NijmegenNijmegenthe Netherlands
  2. 2.Mathematisch InstituutUniversiteit LeidenLeidenthe Netherlands

Personalised recommendations