Advertisement

Comparing Invariants for Class Fields of Imaginary Quadratic Fields

  • Andreas Enge
  • François Morain
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2369)

Abstract

Class fields of imaginary quadratic number fields can be constructed from singular values of modular functions, called class invariants. From a computational point of view, it is desirable that the associated minimal polynomials be small. We examine different approaches to measure the size of the polynomials. Based on experimental evidence, we compare two families of class invariants suggested in the literature with respect to these criteria. Our results lead to more efficient constructions of elliptic curves for cryptography or in the context of elliptic curve primality proving (ECPP).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. O. L. Atkin. The number of points on an elliptic curve modulo a prime. Draft, 1988.Google Scholar
  2. 2.
    A. O. L. Atkin and F. Morain. Elliptic curves and primality proving. Math. Comp., 61(203):29–68, July 1993.Google Scholar
  3. 3.
    B. J. Birch. Weber’s class invariants. Mathematika, 16:283–294, 1969.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    J. M. Borwein and P. B. Borwein. Pi and the AGM. John Wiley, 1987.Google Scholar
  5. 5.
    N. Brisebarre and G. Philibert. Effective lower and upper bounds for the Fourier coefficients of powers of the modular invariant j. In preparation, January 2002.Google Scholar
  6. 6.
    H. Cohen. Advanced topics in computational number theory, volume 193 of Graduate Texts in Mathematics. Springer-Verlag, 2000.Google Scholar
  7. 7.
    R. Dedekind. Erläuterungen zu den vorstehenden Fragmenten. In R. Dedekind and H. Weber, editors, Bernhard Riemann’s gesammelte mathematische Werke und wissenschaftlicher Nachlaβ, pages 438–447. Teubner, Leipzig, 1876.Google Scholar
  8. 8.
    A. Enge and F. Morain. Further investigations of the generalised Weber functions. In preparation, 2001.Google Scholar
  9. 9.
    A. Enge and R. Schertz. Constructing elliptic curves from modular curves of positive genus. In preparation, 2001.Google Scholar
  10. 10.
    A. Enge and R. Schertz. Modular curves of composite level. In preparation, 2001.Google Scholar
  11. 11.
    Robert Fricke. Lehrbuch der Algebra, volume III-Algebraische Zahlen. Vieweg, Braunschweig, 1928.Google Scholar
  12. 12.
    A. Gee. Class invariants by Shimura’s reciprocity law. J. Th’eor. Nombres Bordeaux, 11:45–72, 1999.zbMATHMathSciNetGoogle Scholar
  13. 13.
    A. Gee and P. Stevenhagen. Generating class fields using Shimura reciprocity. In J. P. Buhler, editor, Algorithmic Number Theory, volume 1423 of Lecture Notes in Comput. Sci., pages 441–453. Springer-Verlag, 1998. Third International Symposium, ANTS-III, Portland, Oregon, june 1998, Proceedings.Google Scholar
  14. 14.
    G. Hanrot and F. Morain. Solvability by radicals from a practical algorithmic point of view. Submitted. Available from http://www.lix.polytechnique.fr/-Labo/Francois.Morain/, November 2001.
  15. 15.
    G. Hanrot and F. Morain. Solvability by radicals from an algorithmic point of view. In B. Mourrain, editor, Symbolic and algebraic computation, pages 175–182. ACM, 2001. Proceedings ISSAC’2001, London, Ontario.Google Scholar
  16. 16.
    Marc Hindry and Joseph H. Silverman. Diophantine Geometry — An Introduction. Springer-Verlag, New York, 2000.zbMATHGoogle Scholar
  17. 17.
    Carl Gustav Jacob Jacobi. Fundamenta nova theoriae functionum ellipticarum. In Gesammelte Werke, pages 49–239. Chelsea, New York, 2 (1969) edition, 1829.Google Scholar
  18. 18.
    Felix Klein. Uber die Transformationsgleichung der elliptischen Funktionen und die Auflösung der Gleichungen fünften Grades. Math. Annalen, 14:111–172, 1878. Gesammelte Mathematische Abhandlungen III:13–75.CrossRefGoogle Scholar
  19. 19.
    D. Kohel. CM divisors on modular curves. In preparation, January 2002.Google Scholar
  20. 20.
    C. Meyer. Bemerkungen zum Satz von Heegner-Stark über die imaginärquadratischen Zahlkörper mit der Klassenzahl Eins. J. Reine Angew. Math., 242:179–214, 1970.zbMATHMathSciNetGoogle Scholar
  21. 21.
    F. Morain. Calcul du nombre de points sur une courbe elliptique dans un corps fini: aspects algorithmiques. J. Théor. Nombres Bordeaux, 7:255–282, 1995.zbMATHMathSciNetGoogle Scholar
  22. 22.
    F. Morain. Primality proving using elliptic curves: an update. In J. P. Buhler, editor, Algorithmic Number Theory, volume 1423 of Lecture Notes in Comput. Sci., pages 111–127. Springer-Verlag, 1998. Third International Symposium, ANTS-III, Portland, Oregon, june 1998, Proceedings.Google Scholar
  23. 23.
    F. Morain. Modular curves and class invariants. Preprint, June 2000.Google Scholar
  24. 24.
    R. Schertz. Die singulären Werte der Weberschen Funktionen f, f1, f2, γ2, γ3. J. Reine Angew. Math., 286/287:46–74, 1976.MathSciNetGoogle Scholar
  25. 25.
    R. Schertz. Weber’s class invariants revisited. To appear in J. Théor. Nombres Bordeaux, 2001.Google Scholar
  26. 26.
    Reinhard Schertz. Zur expliziten Berechnung von Ganzheitsbasen in Strahlklassenkörpern über einem imaginär-qudratischen Zahlkörper. Journal of Number Theory, 34(1):41–53, January 1990.Google Scholar
  27. 27.
    Goro Shimura. Introduction to the Arithmetic Theory of Automorphic Functions. Iwanami Shoten and Princeton University Press, 1971.Google Scholar
  28. 28.
    J. H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of Grad. Texts in Math. Springer, 1986.Google Scholar
  29. 29.
    J. H. Silverman. Advanced Topics in the Arithmetic of Elliptic Curves, volume 151 of Grad. Texts in Math. Springer-Verlag, 1994.Google Scholar
  30. 30.
    H. M. Stark. Counting points on CM elliptic curves. Rocky Mountain J. Math., 26(3):1115–1138, 1996.zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    H. Weber. Lehrbuch der Algebra, volume III. Chelsea Publishing Company, New York, 1908.Google Scholar
  32. 32.
    N. Yui and D. Zagier. On the singular values of Weber modular functions. Math. Comp., 66(220):1645–1662, October 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Andreas Enge
    • 1
  • François Morain
    • 1
  1. 1.Laboratoire d’Informatique (CNRS/UMR 7650)Ecole polytechniquePalaiseau CedexFrance

Personalised recommendations