Advertisement

Interface Theories for Component-Based Design

  • Luca de Alfaro
  • Thomas A. Henzinger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2211)

Abstract

We classify component-based models of computation into component models and interface models. A component model specifies for each component howthe component behaves in an arbitrary environment; an interface model specifies for each component what the component expects from the environment. Component models support compositional abstraction, and therefore component-based verification. Interface models support compositional refinement, and therefore componentbased design. Many aspects of interface models, such as compatibility and refinement checking between interfaces, are properly viewed in a gametheoretic setting, where the input and output values of an interface are chosen by different players.

Keywords

Output Port Input Port Input Move Interface Description Interface Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Alur and T. A. Henzinger. Reactive modules. Formal Methods in System Design, 15:7–48, 1999.CrossRefGoogle Scholar
  2. [2]
    R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. In 38th Symp. Foundations of Computer Science, pp. 100–109. IEEE Computer Society Press, 1997.Google Scholar
  3. [3]
    R. Alur, T. A. Henzinger, O. Kupferman, and M. Y. Vardi. Alternating refinement relations. In Concurrency Theory, LNCS 1466, pp. 163–178. Springer-Verlag, 1998.CrossRefGoogle Scholar
  4. [4]
    E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.Google Scholar
  5. [5]
    L. de Alfaro and T. A. Henzinger. Interface automata. In 9th Symp. Foundations of Software Engineering. ACM Press, 2001.Google Scholar
  6. [6]
    L. de Alfaro, T. A. Henzinger, and F. Y. C. Mang. The control of synchronous systems. In Concurrency Theory, LNCS 1877, pp. 458–473. Springer-Verlag, 2000.Google Scholar
  7. [7]
    L. de Alfaro, T. A. Henzinger, and F. Y. C. Mang. The control of synchronous systems, part II. In Concurrency Theory, LNCS, Springer-Verlag, 2001.Google Scholar
  8. [8]
    D. L. Dill. Trace Theory for Automatic Hierarchical Verification of Speedindependent Circuits. MIT Press, 1989.Google Scholar
  9. [9]
    T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Decomposing refinement proofs using assume-guarantee reasoning. In Int. Conf. Computer-aided Design, pp. 245–252. IEEE Computer Society Press, 2000.Google Scholar
  10. [10]
    L. Lamport. The temporal logic of actions. ACM Trans. Programming Languages and Systems, 16:872–923, 1994.CrossRefGoogle Scholar
  11. [11]
    E. A. Lee. What’s ahead for embedded software? IEEE Computer Magazine, 33:18–26, 2000.Google Scholar
  12. [12]
    E. A. Lee. Overview of the Ptolemy Project. Technical Memorandum UCB/ERLM01/ 11, University of California, Berkeley, 2001.Google Scholar
  13. [13]
    N. A. Lynch. Distributed Algorithms. Morgan-Kaufmann, 1996.Google Scholar
  14. [14]
    J. Rumbaugh, G. Booch, and I. Jacobson. The UML Reference Guide. Addison-Wesley, 1999.Google Scholar
  15. [15]
    N. Shankar. Lazy compositional verification. In Compositionality: The Significant Difference, LNCS 1536, pp. 541–564. Springer-Verlag, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Luca de Alfaro
    • 1
  • Thomas A. Henzinger
    • 2
  1. 1.University of CaliforniaSanta Cruz
  2. 2.University of CaliforniaBerkeley

Personalised recommendations