Advertisement

Coupon Collectors, q-Binomial Coefficients and the Unsatisfiability Threshold

  • Alexis C. Kaporis
  • Lefteris M. Kirousis
  • Yannis C. Stamatiou
  • Malvina Vamvakari
  • Michele Zito
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2202)

Abstract

The problem of determining the unsatisfiability threshold for random 3-SAT formulas consists in determining the clause to variable ratio that marks the (experimentally observed) abrupt change from almost surely satisfiable formulas to almost surely unsatisfiable. Up to now, there have been rigorously established increasingly better lower and upper bounds to the actual threshold value. An upper bound of 4.506 was announced by Dubois et al. in 1999 but, to the best of our knowledge, no complete proof has been made available from the authors yet. We consider the problem of bounding the threshold value from above using methods that, we believe, are of interest on their own right. More specifically, we explain how the method of local maximum satisfying truth assignments can be combined withresu lts for coupon collector’s probabilities in order to achieve an upper bound for the unsatisfiability threshold less than 4.571. Thus, we improve over the best, with an available complete proof, previous upper bound, which was 4.596. In order to obtain this value, we also establish a bound on the q-binomial coe.cients (a generalization of the binomial coefficients) which may be of independent interest.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Achlioptas, G. B. Sorkin, “Optimal Myopic Algorithms for Random 3-SAT” in: Proc. 41st Annual Symposium on Foundations of Computer Science (FOCS), 2000. pp 590–600.Google Scholar
  2. 2.
    N. Alon, J. H. Spencer, P. Erdős, The Probabilistic Method, John Wiley and Sons, 1992.Google Scholar
  3. 3.
    B. Bollobás, Random Graphs, Academic Press, London, 1985.zbMATHGoogle Scholar
  4. 4.
    V. Chvátal, “Almost all graphs with 1.44n edges are 3-colourable,” Random Structures and Algorithms 2, pp 11–28, 1991.zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    L. Comtet, Advanced Combinatorics; The Art of Finite and Infinite Expansions. D. Reidel, 1974.Google Scholar
  6. 6.
    R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, D. E. Knuth, “On the Lambert W function,” manuscript, Computer Science Department, University of Waterloo.Google Scholar
  7. 7.
    O. Dubois, Y. Boufkhad, J. Mandler, “Typical random 3-SAT formulae and the satis.ability threshold,” in: Proc. 11th Symposium on Discrete Algorithms (SODA), pp 126–127, 2000.Google Scholar
  8. 8.
    C. M. Fortuin, R. W. Kasteleyn, J. Ginibre, Correlation inequalities on some partially ordered sets, Commun. Math. Physics 22, pp. 89–103, 1971.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    N. J. Fine, Basic Hypergeometric Series and Applications, Mathematical Surveys and Monographs, Number 27, 1980.Google Scholar
  10. 10.
    E. Friedgut, appendix by J. Bourgain, “Sharp thresholds of graph properties, and the k-sat problem,” J. Amer. Math. Soc. 12, pp 1017–1054, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    G. Gasper, M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications, vol 35, Cambridge University Press, Cambridge, 1990.zbMATHGoogle Scholar
  12. 12.
    S. Janson, Y. C. Stamatiou, M. Vamvakari, “Bounding the unsatis.ability threshold of random 3-SAT,” Random Structures and Algorithms, 17, pp 108–116, 2000.MathSciNetGoogle Scholar
  13. 13.
    L.M. Kirousis, Y. C. Stamatiou, An inequality for reducible, increasing properties of randomly generated words, Tech. Rep. TR-96.10.34, C. T. I., University of Patras, Greece, 1996.Google Scholar
  14. 14.
    L. M. Kirousis, E. Kranakis, D. Krizanc, Y. C. Stamatiou, “Approximating the unsatis.ability threshold of random formulas,” Random Structures and Algorithms 12, pp 253–269, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    D. E. Knuth, Fundamental Algorithms, The Art of Computer Programming, 2nd ed., 1973.Google Scholar
  16. 16.
    M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter, Programming Guide, Maple V Release 5, Springer-Verlag, 1998.Google Scholar
  17. 17.
    R. Motwani, P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.Google Scholar
  18. 18.
    A. M. Odlyzko, “Asymptotic Enumeration Methods,” in: R. L. Graham, M. Grötschel, and L. Lovász, eds. Handbook of Combinatorics, Chapter 22, 1063–1229, Elsevier, 1995.Google Scholar
  19. 19.
    W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed., Cambridge University Press, 1993.Google Scholar
  20. 20.
    A. E. Taylor, W.R Mann, Advanced Calculus, 3rd ed., John Wiley & Sons, 1983.Google Scholar
  21. 21.
    F. J. Wright: http://centaur.maths.qmw.ac.uk/Computer Algebra/. A Maple (V-5) implementation of Downhill Simplex based on code given in [19].
  22. 22.
    M. Zito, Randomised Techniques in Combinatorial Algorithmics, PhD Thesis, Department of Computer Science, University of Warwick, November 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Alexis C. Kaporis
    • 1
  • Lefteris M. Kirousis
    • 1
  • Yannis C. Stamatiou
    • 1
    • 2
  • Malvina Vamvakari
    • 1
    • 2
  • Michele Zito
    • 3
  1. 1.Department of Computer Engineering and InformaticsUniversity of PatrasPatrasGreece
  2. 2.Computer Technology InstitutePatrasGreece
  3. 3.Department of Computer ScienceUniversity of LiverpoolUK

Personalised recommendations