Advertisement

Complexity of Layered Binary Search Trees with Relaxed Balance

  • Lars Jacobsen
  • Kim S. Larsen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2202)

Abstract

When search trees are made relaxed, balance constraints are weakened such that updates can be made without immediate rebalancing. This can lead to a speed-up in some circumstances. However, the weakened balance constraints also make it more challenging to prove complexity results for relaxed structures.

In our opinion, one of the simplest and most intuitive presentations of balanced search trees has been given via layered trees. We show that relaxed layered trees are among the best of the relaxed structures. More precisely, rebalancing is worst-case logarithmic and amortized constant per update, and restructuring is worst-case constant per update.

Keywords

Search Tree Internal Node Layered Tree Count Function Balance Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. M. Adel’son-Vel’skiį and E. M. Landis. An Algorithm for the Organisation of Information. Doklady Akadamii Nauk SSSR, 146:263.266, 1962. In Russian. English translation in Soviet Math. Doklady, 3:1259–1263, 1962.Google Scholar
  2. 2.
    Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures and Algorithms. Addison-Wesley, 1983.Google Scholar
  3. 3.
    R. Bayer. Symmetric Binary B-Trees: Data Structure and Maintenance Algorithms. Acta Informatica, 1:290–306, 1972.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    R. Bayer and E. McCreight. Organization and Maintenance of Large Ordered Indexes. Acta Informatica, 1(3):97–137, 1972.CrossRefGoogle Scholar
  5. 5.
    Joan Boyar, Rolf Fagerberg, and Kim S. Larsen. Amortization Results for Chromatic Search Trees, with an Application to Priority Queues. In Fourth International Workshop on Algorithms and Data Structures, volume 955 of Lecture Notes in Computer Science, pages 270–281. Springer-Verlag, 1995.Google Scholar
  6. 6.
    Joan Boyar, Rolf Fagerberg, and Kim S. Larsen. Amortization Results for Chromatic Search Trees, with an Application to Priority Queues. Journal of Computer and System Sciences, 55(3):504–521, 1997.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Joan F. Boyar and Kim S. Larsen. Efficient Rebalancing of Chromatic Search Trees. In Proceedings of the Third Scandinavian Workshop on Algorithm Theory, volume 621 of Lecture Notes in Computer Science, pages 151–164. Springer-Verlag, 1992.Google Scholar
  8. 8.
    Joan F. Boyar and Kim S. Larsen. Efficient Rebalancing of Chromatic Search Trees. Journal of Computer and System Sciences, 49(3):667–682, 1994.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Joaquim Gabarró, Xavier Messeguer, and Daniel Riu. Concurrent Rebalancing on HyperRed-Black Trees. In Proceedings of the 17th International Conference of the Chilean Computer Science Society, pages 93–104. IEEE Computer Society Press, 1997.Google Scholar
  10. 10.
    Leo J. Guibas and Robert Sedgewick. A Dichromatic Framework for Balanced Trees. In Proceedings of the 19th Annual IEEE Symposium on the Foundations of Computer Science, pages 8–21, 1978.Google Scholar
  11. 11.
    S. Hanke, Th. Ottmann, and E. Soisalon-Soininen. Relaxed Balanced Red-Black Trees. In Proc. 3rd Italian Conference on Algorithms and Complexity, volume 1203 of Lecture Notes in Computer Science, pages 193–204. Springer-Verlag, 1997.Google Scholar
  12. 12.
    J. E. Hopcroft. Title unknown. Unpublished work on 2–3trees, 1970.Google Scholar
  13. 13.
    S. Huddleston and K. Mehlhorn. A New Data Structure for Representing Sorted Lists. Acta Informatica, 17:157–184, 1982.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Lars Jacobsen and Kim S. Larsen. Exponentially Decreasing Number of Operations in Balanced Trees. In Seventh Italian Conference on Theoretical Computer Science, 2001. This volume.Google Scholar
  15. 15.
    J. L. W. Kessels. On-the-Fly Optimization of Data Structures. Communications of the ACM, 26:895–901, 1983.MATHCrossRefGoogle Scholar
  16. 16.
    Kim S. Larsen. Amortized Constant Relaxed Rebalancing using Standard Rotations. Acta Informatica, 35(10):859–874, 1998.CrossRefMathSciNetGoogle Scholar
  17. 17.
    Kim S. Larsen. AVL Trees with Relaxed Balance. Journal of Computer and System Sciences, 61(3):508–522, 2000.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Kim S. Larsen and Rolf Fagerberg. B-Trees with Relaxed Balance. In Proceedings of the 9th International Parallel Processing Symposium, pages 196–202. IEEE Computer Society Press, 1995.Google Scholar
  19. 19.
    Kim S. Larsen and Rolf Fagerberg. Efficient Rebalancing of B-Trees with Relaxed Balance. International Journal of Foundations of Computer Science, 7(2):169–186, 1996.MATHCrossRefGoogle Scholar
  20. 20.
    Kim S. Larsen, Thomas Ottmann, and Eljas Soisalon-Soininen. Relaxed Balance for Search Trees with Local Rebalancing. In Fifth Annual European Symposium on Algorithms, volume 1284 of Lecture Notes in Computer Science, pages 350–363. Springer-Verlag, 1997. To appear in Acta Informatica.Google Scholar
  21. 21.
    Kim S. Larsen, Eljas Soisalon-Soininen, and Peter Widmayer. Relaxed Balance through Standard Rotations. In Fifth International Workshop on Algorithms and Data Structures, volume 1272 of Lecture Notes in Computer Science, pages 450–461. Springer-Verlag, 1997. To appear in Algorithmica.Google Scholar
  22. 22.
    Kurt Mehlhorn. Sorting and Searching, volume 1 of Data Structures and Algorithms. Springer-Verlag, 1984.Google Scholar
  23. 23.
    Kurt Mehlhorn and Athanasios Tsakalidis. An Amortized Analysis of Insertions into AVL-Trees. SIAM Journal on Computing, 15(1), 1986.Google Scholar
  24. 24.
    Xavier Messeguer and Borja Valles. HyperChromatic trees: a fine-grained approach to distributed algorithms on RedBlack trees. Tech. Report LSI-98-13-R, Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, 1998.Google Scholar
  25. 25.
    O. Nurmi, E. Soisalon-Soininen, and D. Wood. Concurrency Control in Database Structures with Relaxed Balance. In Proceedings of the 6th ACM Symposium on Principles of Database Systems, pages 170–176, 1987.Google Scholar
  26. 26.
    Otto Nurmi and Eljas Soisalon-Soininen. Uncoupling Updating and Rebalancing in Chromatic Binary Search Trees. In Proceedings of the Tenth ACM SIGACTSIGMOD-SIGART Symposium on Principles of Database Systems, pages 192–198, 1991.Google Scholar
  27. 27.
    Otto Nurmi and Eljas Soisalon-Soininen. Chromatic Binary Search Trees—A Structure for Concurrent Rebalancing. Acta Informatica, 33(6):547–557, 1996.CrossRefMathSciNetGoogle Scholar
  28. 28.
    Otto Nurmi, Eljas Soisalon-Soininen, and Derick Wood. Relaxed AVL Trees, Main-Memory Databases and Concurrency. International Journal of Computer Mathematics, 62:23–44, 1996.MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Th. Ottmann and E. Soisalon-Soininen. Relaxed Balancing Made Simple. Technical Report 71, Institut für Informatik, Universität Freiburg, 1995.Google Scholar
  30. 30.
    Thomas Ottmann and Derick Wood. Updating Binary Trees with Constant Linkage Cost. International Journal of Foundations of Computer Science, 3(4):479–501, 1992.MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Neil Sarnak and Robert E. Tarjan. Planar Point Location Using Persistent Search Trees. Communications of the ACM, 29:669–679, 1986.CrossRefMathSciNetGoogle Scholar
  32. 32.
    Eljas Soisalon-Soininen and Peter Widmayer. Relaxed Balancing in Search Trees. In Advances in Algorithms, Languages, and Complexity, pages 267–283. Kluwer Academic Publishers, 1997.Google Scholar
  33. 33.
    Robert Endre Tarjan. Amortized Computational Complexity. SIAM Journal on Algebraic and Discrete Methods, 6(2):306–318, 1985.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Lars Jacobsen
    • 1
  • Kim S. Larsen
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of Southern Denmark Main Campus: Odense UniversityOdense MDenmark

Personalised recommendations