Eternity Variables to Simulate Specifications

  • Wim H. Hesselink
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2386)


Simulation of specifications is introduced as a unification and generalisation of refinement mappings, history variables, forward simulations, prophecy variables, and backward simulations.

Eternity variables are introduced as a more powerful alternative for prophecy variables and backward simulations. This formalism is semantically complete: every simulation is a composition of a forward simulation, an extension with eternity variables, and a refinement mapping. The finiteness and continuity conditions of the Abadi-Lamport Theorem are unnecessary for this result.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abadi, M., Lamport, L.: The existence of refinement mappings. Theoretical Computer Science 82 (1991) 253–284MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Abadi, M., Lamport, L.: Conjoining specifications. ACM Transactions on Programming Languages and Systems 17 (1995) 507–534.CrossRefGoogle Scholar
  3. 3.
    Cohen, E., Lamport, L.: Reduction in TLA. In: Sangiorgi, D., Simone, R. de (eds.): CONCUR’ 98. Springer V. 1998 (LNCS 1466), pp. 317–331.Google Scholar
  4. 4.
    He, J., Hoare, C.A.R., Sanders, J.W.: Data refinement refined. In: Robinet, B., Wilhelm, R. (eds.): ESOP’86 pp. 187–196. Springer Verlag, 1986 (LNCS 213).Google Scholar
  5. 5.
    Hesselink, W.H.: Eternity variables to prove simulation of specifications (draft).
  6. 6.
    Jonsson, B.: Simulations between specifications of distributed systems. In: Baeten, J.C.M., Groote, J.F. (eds.): CONCUR’91. Springer V. 1991 (LNCS 527), pp. 346–360.Google Scholar
  7. 7.
    Jonsson, B., Pnueli, A., Rump, C.: Proving refinement using transduction. Distributed Computing 12 (1999) 129–149.CrossRefGoogle Scholar
  8. 8.
    Lamport, L.: Critique of the Lake Arrowhead three. Distributed Computing 6 (1992) 65–71.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lamport, L.: The temporal logic of actions. ACM Trans. on Programming Languages and Systems 16 (1994) 872–923.CrossRefGoogle Scholar
  10. 10.
    Lipton, R.J.: Reduction: A method of proving properties of parallel programs. Communications of the ACM 18 (1975) 717–721.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Lynch, N., Vaandrager, F.: Forward and backward simulations, Part I: Untimed systems. Information and Computation 121 (1995) 214–233.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Milner, R.: An algebraic definition of simulation between programs. In: Proc. 2nd Int. Joint Conf. on Artificial Intelligence. British Comp. Soc. 1971. Pages 481–489.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Wim H. Hesselink
    • 1
  1. 1.Dept. of Mathematics and Computing ScienceUniversity of GroningenGroningenThe Netherlands

Personalised recommendations