Eternity Variables to Simulate Specifications

  • Wim H. Hesselink
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2386)


Simulation of specifications is introduced as a unification and generalisation of refinement mappings, history variables, forward simulations, prophecy variables, and backward simulations.

Eternity variables are introduced as a more powerful alternative for prophecy variables and backward simulations. This formalism is semantically complete: every simulation is a composition of a forward simulation, an extension with eternity variables, and a refinement mapping. The finiteness and continuity conditions of the Abadi-Lamport Theorem are unnecessary for this result.


Binary Relation History Variable Behaviour Restriction Label Transition System Forward Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abadi, M., Lamport, L.: The existence of refinement mappings. Theoretical Computer Science 82 (1991) 253–284zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Abadi, M., Lamport, L.: Conjoining specifications. ACM Transactions on Programming Languages and Systems 17 (1995) 507–534.CrossRefGoogle Scholar
  3. 3.
    Cohen, E., Lamport, L.: Reduction in TLA. In: Sangiorgi, D., Simone, R. de (eds.): CONCUR’ 98. Springer V. 1998 (LNCS 1466), pp. 317–331.Google Scholar
  4. 4.
    He, J., Hoare, C.A.R., Sanders, J.W.: Data refinement refined. In: Robinet, B., Wilhelm, R. (eds.): ESOP’86 pp. 187–196. Springer Verlag, 1986 (LNCS 213).Google Scholar
  5. 5.
    Hesselink, W.H.: Eternity variables to prove simulation of specifications (draft).
  6. 6.
    Jonsson, B.: Simulations between specifications of distributed systems. In: Baeten, J.C.M., Groote, J.F. (eds.): CONCUR’91. Springer V. 1991 (LNCS 527), pp. 346–360.Google Scholar
  7. 7.
    Jonsson, B., Pnueli, A., Rump, C.: Proving refinement using transduction. Distributed Computing 12 (1999) 129–149.CrossRefGoogle Scholar
  8. 8.
    Lamport, L.: Critique of the Lake Arrowhead three. Distributed Computing 6 (1992) 65–71.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lamport, L.: The temporal logic of actions. ACM Trans. on Programming Languages and Systems 16 (1994) 872–923.CrossRefGoogle Scholar
  10. 10.
    Lipton, R.J.: Reduction: A method of proving properties of parallel programs. Communications of the ACM 18 (1975) 717–721.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Lynch, N., Vaandrager, F.: Forward and backward simulations, Part I: Untimed systems. Information and Computation 121 (1995) 214–233.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Milner, R.: An algebraic definition of simulation between programs. In: Proc. 2nd Int. Joint Conf. on Artificial Intelligence. British Comp. Soc. 1971. Pages 481–489.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Wim H. Hesselink
    • 1
  1. 1.Dept. of Mathematics and Computing ScienceUniversity of GroningenGroningenThe Netherlands

Personalised recommendations