Advertisement

Qualitative Spatio-Temporal Continuity

  • Shyamanta M. Hazarika
  • Anthony G. Cohn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2205)

Abstract

We explore different intuitive notions of spatio-temporal continuity and give a formal characterization of continuity for space-time histories. We investigate the types of transitions possible for the RCC-8 topological relations under each distinct notion of spatio-temporal continuity and provide a hierarchy of conceptual neighbourhood diagrams.

Keywords

spatio-temporal reasoning continuity space-time transitions conceptual neighbourhoods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J F Allen, ‘Towards a general theory of action and time’, Artificial Intelligence, 23(2), 123–154, (1984).zbMATHCrossRefGoogle Scholar
  2. 2.
    R Carnap, Introduction to Symbolic Logic and its Applications, Dover Publications, Inc., New York, 1958. Translated by W H Meyer and J Wilkinson.zbMATHGoogle Scholar
  3. 3.
    B L Clarke, ‘A calculus of individuals based on ‘connection’’, Notre Dame Journal of Formal Logic, 22(3), 204–218, (July 1981).zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    A G Cohn, B Bennett, J Gooday, and N Gotts, ‘RCC: A Calculus for Region based Qualitative Spatial Reasoning’, GeoInformatica, 1, 275–316, (1997).CrossRefGoogle Scholar
  5. 5.
    A G Cohn and S M Hazarika, ‘Continuous transitions in mereotopology’, in Commonsense-2001: 5th Symp. on Logical Formalizations of Commonsense Reasoning, New York, (2001).Google Scholar
  6. 6.
    A G Cohn and S M Hazarika, ‘Qualitative spatial representation and reasoning: An overview’, Fundamenta Informaticae, 46(1-2), 1–29, (2001).zbMATHMathSciNetGoogle Scholar
  7. 7.
    A. G. Cohn and A. Varzi, ‘Connection relations in mereotopology’, in Proceedings of ECAI-98, ed., H. Prade, pp. 150–154. John Wiley & Sons, (August 1998).Google Scholar
  8. 8.
    A G Cohn and A Varzi, ‘Modes of connection’, in Proceedings of COSIT-99, eds., C. Freksa and D.M. Mark, LNCS No. 1661, pp. 299–314. Springer-Verlag, (1999).Google Scholar
  9. 9.
    E Davis, ‘Continuous shape transformation and metrics of shape’, Fundamenta Informaticae, 46(1-2), 31–54, (2001).zbMATHMathSciNetGoogle Scholar
  10. 10.
    I Düntsch, H Wang, and S McCloskey, ‘A relation-algebraic approach to Region Connection Calculus’, Theoretical Computer Science, 255, 63–83, (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    A P Galton, Qualitative Spatial Change, Oxford University Press, 2000.Google Scholar
  12. 12.
    N M Gotts, J M Gooday, and A G Cohn, ‘A connection based approach to common-sense topological description and reasoning’, The Monist, 79(1), 51–75, (1996).Google Scholar
  13. 13.
    P. J. Hayes, ‘Naive physics I: Ontology for liquids’, in Formal Theories of the Commonsense World, eds., J. R. Hubbs and R. C. Moore, 71–89, Ablex Publ. Corp., Norwood, NJ, (1985).Google Scholar
  14. 14.
    M Heller, The Ontology of Physical Objects: Four Dimensional Hunks of Matter, Cambridge University Press, Cambridge, 1990.Google Scholar
  15. 15.
    NIMA (National Imagery and Mapping Agency), ‘The big idea framework’. Available from http://www.opengis.org/thebigidea/, (2000).
  16. 16.
    P. Muller, ‘A qualitative theory of motion based on spatio-temporal primitives’, in Proceedings of KR-98, ed., A. G. Cohn et al., pp. 131–141. Morgan Kaufman, (1998).Google Scholar
  17. 17.
    P. Muller, ‘Space-time as a primitive for space and motion’, in Formal ontology in Information Systems, ed., N. Guarino, pp. 63–76. IOS Press, (1998).Google Scholar
  18. 18.
    J. Nicod, Geometry in the Sensible World, Doctoral thesis, Sorbonne, 1924. English translation in Geometry and Induction, Routledge and Kegan Paul, 1969.Google Scholar
  19. 19.
    D. A. Randell, Z. Cui, and A. G. Cohn, ‘A spatial logic based on regions and connection’, in Proceedings of KR-92, ed., B. Nebel et al., pp. 165–176. Morgan Kaufmann, (1992).Google Scholar
  20. 20.
    B.A.W. Russell, Our Knowledge of the External World, Routledge, 1914.Google Scholar
  21. 21.
    P Simons, Parts: A Study In Ontology, Clarendon Press, Oxford, 1987.Google Scholar
  22. 22.
    L Vieu, Sémantique des relations spatiales et inférences spatio-temporelles: une contribution á l’étude des structures formelles de l’espace en langage naturel, Ph.D. dissertation, Université Paul Sabatier, Toulouse, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Shyamanta M. Hazarika
    • 1
  • Anthony G. Cohn
    • 1
  1. 1.School of ComputingUniversity of LeedsLeedsUK

Personalised recommendations