Hierarchical Diagnosis of Large Configurator Knowledge Bases

  • Alexander Felfernig
  • Gerhard E. Friedrich
  • Markus Zanker
  • Dietmar Jannach
  • Markus Stumptner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2174)


Debugging, validation, and maintenance of configurator knowledge bases are important tasks for the successful deployment of product configuration systems. Consistency-based diagnosis has shown to be a promising approach for detecting faulty parts in the knowledge bases and explaining unexpected behavior of the configurator, whereby (partial) configurations are used as test cases. In this paper we show how hierarchical diagnosis can be employed to cope with the complexity of debugging large configurator knowledge bases. A framework for hierarchical diagnosis on different levels of abstraction is presented as well as an algorithm for the calculation of diagnoses on those levels. The presented approach aims at the reuse of existing special purpose configuration systems. We show that the exploitation of hierarchies in such problem domains leads to a significant efficiency enhancement thus broadening the applicability of consistency-based diagnosis.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Autio and R. Reiter. Structural abstraction in model-based diagnosis, Proc: ECAI’98, Brighton, UK, John Wiley and Sons, 1998, pp. 269–273.Google Scholar
  2. 2.
    R.R. Bakker and F. Dikker and F. Tempelman and P.M. Wognum. Diagnosing and solving over-determined constraint satisfaction problems. Proc: IJCAI’93, Chambery, Morgan Kaufmann, 1993, pp. 276–281.Google Scholar
  3. 3.
    P. Baumgartner, P. Fröhlich, U. Furbach and W. Nejdl. Semantically Guided Theorem Proving for Diagnosis Applications. Proc: IJCAI’97, Nagoya, Morgan Kaufmann, 1997, pp. 460–465.Google Scholar
  4. 4.
    L. Console, G. Friedrich, and D.T. Dupré. Model-based diagnosis meets error diagnosis in logic programs. Proc: IJCAI’93, Chambery, Morgan Kaufmann, 1993, pp. 1494–1501.Google Scholar
  5. 5.
    A. Felfernig, G. Friedrich, D. Jannach, and M. Stumptner. Consistency based diagnosis of configuration knowledge bases. Proc: ECAI’2000, Berlin, IOS Press, 2000, pp. 146–150.Google Scholar
  6. 6.
    D. Jannach. Integration of consistency-based diagnosis and configuration, PhD thesis, University Klagenfurt, 2001.Google Scholar
  7. 7.
    G. Fleischanderl, G. Friedrich, A. Haselboeck, H. Schreiner and M. Stumptner. Configuring Large Systems Using Generative Constraint Satisfaction, IEEE Intelligent Systems, July/August, 1998.Google Scholar
  8. 8.
    G. Friedrich, Theory Diagnosis. A Concise Characterization of Faulty Systems, Proc: IJCAI’93, Chambery, France, Morgan Kaufmann, 1993, pp. 1466–1473.Google Scholar
  9. 9.
    G. Friedrich, M. Stumptner, and F. Wotawa. Model-Based Diagnosis of Hardware Designs, Artificial Intelligence (111) 2, Elsevier, 1999, pp. 3–39.CrossRefMathSciNetGoogle Scholar
  10. 10.
    M. Gertz, U. Lipeck. A Diagnostic Approach to Repairing Constraint Violations in Databases. Proc: DX’95 Workshop, Goslar, 1995.Google Scholar
  11. 11.
    R. Greiner, B.A. Smith, R.W. Wilkerson. A correction to the algorithm in Reiter’s theory of diagnosis. Artificial Intelligence, 41(1), Elsevier, 1989, pp. 79–88.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    W. Harmscher. Modeling Digital Circuits for Troubleshooting, Artificial Intelligence 51(1-3), Elsevier, 1991, pp. 223–271.CrossRefGoogle Scholar
  13. 13.
    D. Mailharro. A Classification and Constraint-based Framework for Configuration, AI EDAM, Vol 12(98), Cambridge University Press, 1998.Google Scholar
  14. 14.
    S. Mittal and F. Frayman. Towards a generic model of configuration tasks, Proc: IJCAI’89, 1989, pp. 1395–1401.Google Scholar
  15. 15.
    I. Mozetic. Hierarchical Model-based Diagnosis, in: W. Harmscher et al.: Readings in Model-based Diagnosis, Morgan Kaufmann, 1992, pp. 354–372.Google Scholar
  16. 16.
    R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32(1), Elsevier, 1987, pp. 57–95.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    P. Struss. What’s in SD? Towards a theory of Modeling of Diagnosis. In: W. Harmscher et al.: Readings in Model-based Diagnosis, Morgan Kaufmann, 1992.Google Scholar
  18. 18.
    M. Stumptner, F. Wotawa. Diagnosing tree-structured systems, Proc: IJCAI’97, Nagoya, Morgan Kaufmann, 1997, pp. 440–445.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Alexander Felfernig
    • 1
  • Gerhard E. Friedrich
    • 1
  • Markus Zanker
    • 1
  • Dietmar Jannach
    • 1
  • Markus Stumptner
    • 2
  1. 1.Computer Science and Manufacturing Research GroupUniversity of KlagenfurtAustria
  2. 2.Database and Artificial Intelligence GroupTechnische UniversitätWien

Personalised recommendations