Advertisement

Image Sequence Analysis of Satellite NO2 Concentration Maps

  • M. Wenig
  • C. Leue
  • S. Kraus
  • T. Wagner
  • U. Platt
  • B. Jähne
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2191)

Abstract

Here we describe a new method for the quantification of a global NOx budget from image sequences of the GOME instrument on the ERS-2. The focus of this paper is on image processing techniques to separate tropospheric and stratospheric NO2-colums using normalized convolution with infinite impulse response filters (IIR) to interpolate gaps in the data and average the cloud coverage of the earth, the estimation the NO2 life time and the determination of regional NOx source strengths.

Keywords

Column Density Solar Zenith Angle Source Strength Infinite Impulse Response Filter Cloud Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Deriche. Fast algorithms for low-level vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(1):78–87, January 1990.CrossRefGoogle Scholar
  2. 2.
    H. Knutsson and C.F. Westin. Normalized and differential convolution, methods for interpolation and filtering of incomplete and uncertain data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 3:515–523, 1993.Google Scholar
  3. 3.
    Carsten Leue. Detektion der troposphärischen N02 Daten anhand von GOME. PhD thesis, Universität Heidelberg, 1999.Google Scholar
  4. 4.
    U. Platt. Differential Optical Absorption Spectroscopy (DOAS). In W.M. Sigrist, editor, Air Monitoring by Spectrometric Techniques, volume 127. John Wiley & Sons, Inc., 1994.Google Scholar
  5. 5.
    M. Unser, A. Aldroubi, and M. Eden. Fast B-spline transforms for continuous image representation and interpolation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(3):277–285, March 1991.CrossRefGoogle Scholar
  6. 6.
    M. Wenig. Satellite Measurement of Long-Term Global Tropospheric Trace Gas Distributions and Source Strengths-Algorithm Development and Data Analysis. PhD thesis, University of Heidelberg, July 2001.Google Scholar
  7. 7.
    M. Wenig, C. Leue, B. Jähne, and U. Platt. Cloud classification using image sequences of GOME data. In European Symposium on Atmospheric Measurements from Space. ESA, February 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • M. Wenig
    • 1
    • 2
  • C. Leue
    • 1
    • 2
  • S. Kraus
    • 1
  • T. Wagner
    • 2
  • U. Platt
    • 2
  • B. Jähne
    • 1
    • 2
  1. 1.Interdisciplinary Center for Scientific Computing (IWR)Heidelberg UniversityHeidelbergGermany
  2. 2.Institute for Environmental PhysicsHeidelberg UniversityHeidelbergGermany

Personalised recommendations