Advertisement

GETESS: Constructing a Linguistic Search Index for an Internet Search Engine

  • Ilvio Bruder
  • Antje Düsterhöft
  • Markus Becker
  • Jochen Bedersdorfer
  • Günter Neumann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1959)

Abstract

In this paper, we illustrate how Internet documents can be automatically analyzed in order to capture the content of a document in a more detailed manner than usual. The result of the document analysis is called an abstract, and will it be used as a linguistic search index for the Internet search engine, GETESS. We show how the linguistic analysis system SMES can be used with a Harvest-based search engine for constructing a linguistic search index. Further, we denote how the linguistic index can be exploited for answering user search inquiries.

Keywords

Search Engine Prepositional Phrase Internet Search Engine Keyword Extraction State Transducer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.T Baeza-Yates, B. Rebeiro-Neto: Modern Information Retrieval. ACM Presse, Addison Wesley, New York, 1999Google Scholar
  2. 2.
    I. Bruder: Integration von Harvest und SMES in GETESS. Studienarbeit, Universität Rostock, Fachbereich Informatik, 1999 (in German)Google Scholar
  3. 3.
    I. Bruder: Integration von Kontextwissen in den GETESS-Gatherer. Diplomarbeit, Universität Rostock, Fachbereich Informatik, 2000 (in German)Google Scholar
  4. 4.
    A. Düsterhöft, S. Gröticke: A Heuristic Approach for Recognizing a Document’s Language Used for the Internet Search Engine GETESS. In: Proc. of the 2nd InternationalWorkshop on Natural Language and Information Systems, September 2000, Greenwich, UKGoogle Scholar
  5. 6.
    G. Neumann, R. Backofen, J. Baur, M. Becker, C. Braun: An Information Extraction Core System for Real World German Text Processing. In: Proc. of the ANLP’97, March 1997, Washington, USA, 208–215Google Scholar
  6. 7.
    G. Neumann, J. Piskorski, C. Braun: A Divide-and-Conquer Strategy for Shallow Parsing of German Free Texts. In: Proc. of the 6th International Conference of Applied Natural Language, April 2000, Seattle, USAGoogle Scholar
  7. 8.
    M. Klettke, H. Meyer: Managing XML documents in object-relational databases. University of Rostock, Rostocker Informatik-Berichte, No. 24, 1999Google Scholar
  8. 9.
    S. Staab, C. Braun, I. Bruder, A. Düsterhöft, A. Heuer, M. Klettke, G. Neumann, B. Prager, J. Pretzel, H.-P. Schnurr, R. Studer, H. Uszkoreit, B. Wrenger, „A System for Facilitating and Enhancing Web Search”, In: IWANN’99-Proceedings of International Working Conference on Artificial and Natural Neural Networks, Alicante, ES, 1999, LNCS, Berlin, Heidelberg, SpringerGoogle Scholar
  9. 10.
    S. Staab, C. Braun, I. Bruder, A. Düsterhöft, A. Heuer, M. Klettke, G. Neumann, B. Prager, J. Pretzel, H.-P. Schnurr, R. Studer, H. Uszkoreit, B. Wrenger, „GETESS-Searching the Web Exploiting German Texts”, In: CIA’99-Proc. of the 3rd Int. Workshop on Cooperating Information Agents. Upsala, Schweden, 1999, LNCS, Berlin, Heidelberg, SpringerGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Ilvio Bruder
    • 1
  • Antje Düsterhöft
    • 1
  • Markus Becker
    • 2
  • Jochen Bedersdorfer
    • 2
  • Günter Neumann
    • 2
  1. 1.Computer Science DepartmentUniversity of RostockRostockGermany
  2. 2.DFKI GmbHSaarbrückenGermany

Personalised recommendations