Linear Instability Mechanisms of Noise-Induced Phase Transitions

  • Marta Ibañes
  • Jordi García-Ojalvo
  • Raúl Toral
  • José M. Sancho
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 557)

Abstract

We review the role of linear instabilities on phase transition processes induced by external spatiotemporal noise. In particular, we present a detailed linear stability analysis of a standard Ginzburg-Landau model with multiplicative noise. The results show the well-known constructive role of fluctuations in this case. The analysis is performed for both non-conserved and conserved dynamics, corresponding to order-disorder and phase separation transitions, respectively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. García-Ojalvo, A. Hernández-Machado, and J.M. Sancho, “Effects of external noise on the Swift-Hohenberg equation,” Phys. Rev. Lett. 71, 1542 (1993).CrossRefADSGoogle Scholar
  2. 2.
    J.M.R. Parrondo, C. Van den Broeck, J. Buceta, and J. de la Rubia, “Noise-induced spatial patterns,” Physica A 224, 153 (1996).CrossRefADSGoogle Scholar
  3. 3.
    A.A. Zaikin and L. Schimansky-Geier, “Spatial patterns induced by additive noise,” Phys. Rev. E 58, 4355 (1998).CrossRefADSGoogle Scholar
  4. 4.
    A. Becker and L. Kramer, “Linear stability analysis for bifurcations in spatially extended systems with fluctuating control parameter,” Phys. Rev. Lett. 73, 955 (1994).CrossRefADSGoogle Scholar
  5. 5.
    J. García-Ojalvo and J.M. Sancho, “External fluctuations in a pattern-forming instability,” Phys. Rev. E 53, 5680 (1996).CrossRefADSGoogle Scholar
  6. 6.
    C. Van den Broeck, J.M.R. Parrondo, and R. Toral, “Noise-induced nonequilibrium phase transitions,” Phys. Rev. Lett. 73, 3395 (1994).CrossRefADSGoogle Scholar
  7. 7.
    P. Luque, J. García-Ojalvo, and J.M. Sancho, “Nonequilibrium phase transitions and external noise,” in Fluctuation phenomena: disorder and nonlinearity, edited by A.R. Bishop, S. Jiménez, and L. Vázquez, p. 75 (World Scientific, Singapore, 1995).Google Scholar
  8. 8.
    C. Van den Broeck, J.M.R. Parrondo, R. Toral, and R. Kawai, “Nonequilibrium phase transitions induced by multiplicative noise,” Phys. Rev. E 55, 4084 (1997).CrossRefADSGoogle Scholar
  9. 9.
    J. García-Ojalvo, A.M. Lacasta, J.M. Sancho and R. Toral, Europhys. Lett. 42, 125 (1998).CrossRefADSGoogle Scholar
  10. 10.
    J. García-Ojalvo and J.M. Sancho, Noise in spatially extended systems, Springer Verlag, New York (1999).MATHGoogle Scholar
  11. 11.
    J.M. Sancho and J. García-Ojalvo, “Noise-induced order in extended systems: A tutorial,”, this volume.Google Scholar
  12. 12.
    P.C. Hohenberg and B.I. Halperin, “Theory of dynamic critical phenomena,” Rev. Mod. Phys. 49, 435 (1977).CrossRefADSGoogle Scholar
  13. 13.
    E.A. Novikov, “Functionals and the random-force method in turbulence theory,” Sov. Phys. JETP 20, 1290 (1965).Google Scholar
  14. 14.
    M. Ibañes, J. García-Ojalvo, R. Toral, and J.M. Sancho, “Noise-induced phase separation: mean-field results,” Phys. Rev. E 60, 3597 (1999).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Marta Ibañes
    • 1
  • Jordi García-Ojalvo
    • 2
  • Raúl Toral
    • 3
  • José M. Sancho
    • 1
  1. 1.Departament d'Estructura i Constituents de la MatèriaUniv.de BarcelonaBarcelonaSpain
  2. 2.Departament de Física i Enginyeria NuclearUniv. Politècnica de CatalunyaTerrassaSpain
  3. 3.Departament de FísicaUniv. de les Illes Balears, and Instituto Mediterráneo de Estudios Avanzados (IMEDEA)Palma de MallorcaSpain

Personalised recommendations