Advertisement

Measures for Assessing Dynamic Complexity Aspects of Object-Oriented Conceptual Schemes

  • Geert Poels
  • Guido Dedene
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1920)

Abstract

System developers are increasingly realising that the quality of a system must be ensured in the early stages of the development life cycle. It is in this context that a number of quality frameworks for conceptual schemes have been proposed. However, before the quality of a conceptual schema can be improved, it must be assessed. Accordingly, a number of measure suites have been proposed for measuring quality properties of conceptual schemes. In this paper we focus on one particular quality property, i.e. complexity. This property can be described as the mental burden of the persons that must understand, modify, extend, verify, implement, and reuse conceptual schemes. The proposed complexity measures for conceptual schemes have in common that they only capture the complexity of the static or structural aspects of a conceptual schema. We therefore present a complementary suite of measures that focuses on conceptual schema complexity as seen from a dynamic perspective.

Keywords

Quality Property Event Type Conceptual Schema Object Type Measure Suite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D’Souza, D.F., Wills, A.C.: Objects, Components, and Frameworks with UML: the Catalysis Approach. Addison-Wesley (1999)Google Scholar
  2. 3.
    Boehm, B.W.: Software Engineering Economics. Prentice-Hall (1981)Google Scholar
  3. 4.
    Tegarden, D.P., Sheetz, S.D., Monarchi, D.E.: A Software Complexity Model of Object-Oriented Systems. Decision Support Systems: An Int’l J. 13 (1995) 241–262CrossRefGoogle Scholar
  4. 5.
    Fenton, N.: Software Measurement: A Necessary Scientific Base. IEEE Trans. Software Eng. 20 (1994) 199–206CrossRefGoogle Scholar
  5. 6.
    Shepperd, M., Ince, D.: Algebraic Validation of Software Metrics. In: Proc. 3rd European Software Eng. Conf. (ESEC’91). Milan (1991) 343–363Google Scholar
  6. 7.
    Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous & Practical Approach. PWS Publishing Company, London (1997)Google Scholar
  7. 8.
    Assenova, P., Johannesson, P.: Improving Quality in Conceptual Modelling by the Use of Schema Transformations. In: Proc. 15th Int’l Conf. Conceptual Modeling (ER’96). Cottbus, Germany (1996) 277–291Google Scholar
  8. 9.
    Lindland, O.I., Sindre, G., Solvberg, A.: Understanding Quality in Conceptual Modeling. IEEE Software 11 (1994) 42–49CrossRefGoogle Scholar
  9. 10.
    Moody, D.L., Shanks, G.G., Darke, P.: Improving the Quality of Entity Relationship Models-Experience in Research and Practice. In: Proc. 17th Int’l Conf. Conceptual Modeling (ER’98). Singapore (1998) 255–276Google Scholar
  10. 11.
    Moody, D.L.: Metrics for Evaluating the Quality of Entity Relationship Models. In: Proc.17th Int’l Conf. Conceptual Modeling (ER’98). Singapore (1998) 211–225Google Scholar
  11. 12.
    Briand, L.C., Wüst, J., Ikonomovski, S., Lounis, H.: A Comprehensive Investigation of Quality Factors in Object-Oriented Designs: an Industrial Case Study. In: Proc. 21st Int’l Conf. Software Eng. (ICSE’99). Los Angeles (1999) 345–354Google Scholar
  12. 13.
    McBrien, P., Poulovassilis, A.: A Formal Framework for ER Schema Transformation. In: Proc. 16th Int’l Conf. Conceptual Modeling (ER’97). Los Angeles (1997) 408–421Google Scholar
  13. 14.
    Genero, M., Piattini, M., Calero, C.: An Approach to Evaluate the Complexity of Conceptual Database Models. In: Proc. 3rd European Software Measurement Conf. Madrid (2000)Google Scholar
  14. 15.
    Moser, S., Misic, V.B.: Measuring Class Coupling and Cohesion: A Formal Metamodel Approach. In: Proc. Asia Pacific Software Eng. Conf. (APSEC’97). Hong Kong (1997) 31–40Google Scholar
  15. 16.
    Misic, V.B., Moser, S.: Formal Approach to Metamodeling: A Generic Object-Oriented Perspective. In: Proc. 16th Int’l Conf. Conceptual Modeling (ER’97). Los Angeles (1997) 243–256Google Scholar
  16. 17.
    Badri, L., Badri, M., Ferdenache, S.: Towards Quality Control Metrics for Object-Oriented Systems Analysis. In: Proc. 16th Int’l Conf. Technology of Object-Oriented Languages (TOOLS-16). Versailles, France (1995) 193–206Google Scholar
  17. 18.
    Genero, M., Manso, M.E., Piattini, M., Garcia, F.J.: Assessing the Quality and the Complexity of OMT Models. In: Proc. 2nd European Software Measurement Conf.Amsterdam (1999) 99–109Google Scholar
  18. 19.
    Coad, P., Yourdon, E.: Object-Oriented Analysis. Prentice-Hall (1990)Google Scholar
  19. 20.
    Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.: Object Oriented Modeling and Design. Prentice-Hall (1991)Google Scholar
  20. 21.
    Chidamber, S.R., Kemerer, C.F.: A Metrics Suite for Object Oriented Design. IEEE Trans.Software Eng. 20 (1994) 476–493CrossRefGoogle Scholar
  21. 22.
    Brito e Abreu, F., CarapuÇa, R.: Object-Oriented Software Engineering: Measuring and Controlling the Development Process. In: Proc. 4th Int’l Conf. Software Quality (ICSQ’94).McLean, VA (1994)Google Scholar
  22. 23.
    Briand, L.C., Daly, J.W., Wüst, J.K.: A Unified Framework for Cohesion Measurement in Object-Oriented Systems. Empirical Software Eng., An Int’l J. 3 (1998) 65–117CrossRefGoogle Scholar
  23. 24.
    Briand, L.C., Daly, J.W., Wüst, J.K.: A Unified Framework for Coupling Measurement in Object-Oriented Systems. IEEE Trans. Software Eng. 25 (1999) 91–121CrossRefGoogle Scholar
  24. 25.
    Snoeck, M.: On a process algebra approach for the construction and analysis of M.E.R.O.DE.-based conceptual models. Ph.D. dissertation. Katholieke Universiteit Leuven(1995)Google Scholar
  25. 26.
    Snoeck, M., Dedene, G.: Existence Dependency: The Key to Semantic Integrity Between Structural and Behavioural Aspects of Object Types. IEEE Trans. Software Eng. 24 (1998) 233–251CrossRefGoogle Scholar
  26. 27.
    Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide.Addison-Wesley (1999)Google Scholar
  27. 28.
    Poels, G., Dedene, G.: Measures for Object-Event Interactions. In: Proc. 33rd Int’l Conf.Technology of Object-Oriented Languages and Systems (TOOLS-33). Mont St. Michel, France (2000) 70–81Google Scholar
  28. 29.
    Brito e Abreu, F., Esteves, R., Goulao, M.: The Design of Eiffel Programs: Quantitative Evaluation Using the MOOD Metrics. In: Proc. 20th Int’l Conf. Technology of Object-Oriented Languages (TOOLS-20). Santa Barbara, Calif. (1996)Google Scholar
  29. 30.
    Poels, G.: On the use of a Segmentally Additive Proximity Structure to Measure Object Class Life Cycle Complexity. In: Dumke, R., Abran, A.: Software Measurement: Current Trends in Research and Practice. Deutscher UniversitÄts Verlag, Wiesbaden, Germany (1999) 61–79Google Scholar
  30. 31.
    Kitchenham, B., Pfleeger, S.L., Fenton, N.: Towards a Framework for Software Measurement Validation. IEEE Trans. Software Eng. 21 (1995) 929–944CrossRefGoogle Scholar
  31. 32.
    Zuse, H.: A Framework for Software Measurement. Walter de Gruyter, Berlin (1998)Google Scholar
  32. 33.
    Roberts, F.S.: Measurement Theory with Applications to Decisionmaking, Utility and the Social Sciences. Addison-Wesley (1979)Google Scholar
  33. 34.
    Suppes, P., Krantz, D.M., Luce, R.D., Tversky, A.: Foundations of Measurement: Geometrical, Threshold, and Probabilistic Representations. Academic Press, San Diego,Calif. (1989)Google Scholar
  34. 35.
    Poels, G., Dedene, G.: Distance-based software measurement: necessary and sufficient properties for software measures. Information and Software Technology 42 (2000) 35–46CrossRefGoogle Scholar
  35. 36.
    Poels, G., Viaene, S., Dedene, G.: Distance Measures for Information System Reengineering. In: Proc. 12th Int’l Conf. Advanced Information Systems Eng. (CAiSE*00), Stockholm (2000) 387–400Google Scholar
  36. 37.
    Briand, L., Arisholm, E., Counsell, S., Houdek, F., Thévenod-Fosse, P.: Empirical Studies of Object-Oriented Artifacts, Methods, and Processes: State of The Art and Future Directions. Tech. Rep. IESE 037.99/E, Fraunhofer IESE (1999)Google Scholar
  37. 38.
    Benlarbi, S., El Emam, K., Goel, N.: Issues in Validating Object-Oriented Metrics for Early Risk Prediction. In: Proc. 10th Int’l Symposium Software Reliability Eng. (ISSRE’99). Boca Raton, Florida (1999)Google Scholar
  38. 39.
    Basili, V.R., Briand, L., Melo, W.L.: A Validation of Object-Oriented Design Metrics as Quality Indicators. IEEE Trans. Software Eng. 22 (1996) 751–761CrossRefGoogle Scholar
  39. 40.
    Briand, L., Daly, J.W., Porter, V., Wüst, J.: A Comprehensive Empirical Validation of Product Measures for Object-Oriented Systems. Tech. Rep. ISERN-98-07, Fraunhofer IESE (1998)Google Scholar
  40. 41.
    Briand, L.C., Morasca, S., Basili, V.R.: Defining and Validating Measures for Object-Based High-Level Design. IEEE Trans. Software Eng. 25 (1999) 722–743Google Scholar
  41. 42.
    Brito e Abreu, F., Melo, W.: Evaluating the Impact of Object-Oriented Design on Quality. In: Proc. 3rd Int’l Software Metrics Symposium (METRICS’96). Berlin (1996)Google Scholar
  42. 43.
    Benlarbi, S., Melo, W.L.: Polymorphism Measures for Early Risk Prediction. In: Proc. 21st Int’l Conf. Software Eng. (ICSE’99). Los Angeles (1999) 334–344Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Geert Poels
    • 1
  • Guido Dedene
    • 1
  1. 1.MIS Group, Dept. Applied Economic SciencesKatholieke Universiteit LeuvenLeuven

Personalised recommendations