Advertisement

A Modeling Language for Design Processes in Chemical Engineering

  • Markus Eggersmann
  • Claudia Krobb
  • Wolfgang Marquardt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1920)

Abstract

In the chemical industry a major task is to design manufacturing pro-cesses, which is a creative, ill-defined, complex, and incompletely understood problem. Currently, the design knowledge and experience are mostly located in the mind of the individual engineer. It is desirable to move this knowledge at least in part into a computer supported environment. The key element is a proper model of the design process itself, which is essential for understanding and supporting it. Examples of design processes in chemical engineering are analyzed in order to learn what is necessary to describe them completely. This leads to requirements a modeling language for design processes in chemical engineering has to fulfill. Because the requirements are not completely met by existing work process modeling languages, an existing language is modified and enhanced to allow representation of the processes under consideration. The new language is used to formally represent sample work processes from the application domain. It serves as a basis for the development of a support functionality which guides the designing engineer through his work within a prototypical environment for mathematical modeling of chemical processes, a major part of the design process.

Keywords

Design Process Product Model Work Process Requirement Engineer Design Knowledge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armenise, P., Bandinelli, S., Ghezzi, C., Morzenti, A.: A Survey and Assesment of Software Pro-cess Representation Formalisms. International Journal of Software Engineering and Knowledge Engineering, Vol. 3 No. 3, 401–426 (1993)CrossRefGoogle Scholar
  2. 2.
    Bañares-Alcántara, R., Lababidi, H.M.S.: Design Support Systems for Process Engineering — II. KBDS: An Experimental Prototype. Computers chem. Engng, Vol. 19, No. 3, 279–301 (1995)CrossRefGoogle Scholar
  3. 3.
    Bayer, B., Marquardt, W.: A Product Data Model for Design Data in Chemical Engineering. Technical Report LPT-2000-09, Lehrstuhl für Prozesstechnik, RWTH Aachen (2000)Google Scholar
  4. 4.
    Bayer, B., Schneider, R., Marquardt, W.:Integration of Data Models for Process Design — First Steps and Experiences. 7th International Symposium on Process Systems Engineering, Key-stone, Colorado (2000)Google Scholar
  5. 5.
    Bogusch, R., Lohmann, B., Marquardt, W.: Computer-aided Process Modeling with ModKit. Submitted to Comp. Chem. Engng. (1999)Google Scholar
  6. 6.
    Davis, R., Alla, H.: Petri Nets for Modeling of Dynamic Systems — A Survey. Automatica, Vol. 30, No. 2, 175–202 (1994)Google Scholar
  7. 7.
    Eggersmann, M., Krobb, C., Marquardt, W.: A Language for Modeling Design Processes in Chemical Engineering. Technical Report LPT-2000-02, Lehrstuhl für Prozesstechnik, RWTH Aachen (2000)Google Scholar
  8. 8.
    Eggersmann, M., Schneider, R.: A Scenario for Design Processes in Chemical Engineering. Technical Report LPT-2000-06, Lehrstuhl für Prozesstechnik, RWTH Aachen (2000)Google Scholar
  9. 9.
    Estublier, J, Dami, S., Amiour, A.: APEL: A Graphical yet Executable Formalism for Process Modeling. Automated Software Engineering (ASE), March (1997)Google Scholar
  10. 10.
    Gerstlauer, A., Hierlemann, M., Marquardt, W.: On the Representation of Balance Equations in a Knowledge Based Process Modeling Tool. CHISA’93, Prag, September (1993)Google Scholar
  11. 11.
    Grosz, G., Rolland, C., Schwer, S., Souveyet, C., Plihon, V., Si-Said, S., Ben Achour, C., Gnaho, C.: Modelling and Engineering the Requirements Engineering Process: An Overview of the NA-TURE Approach, Requirements Engineering, Vol. 2, 115–131 (1997)Google Scholar
  12. 12.
    Han, C., Stephanopoulos, G., Douglas, J.M.: Automation in Design: The Conceptual Synthesis of Chemical Processing Schemes. In: Stephanopoulos, G., Han, C.: Intelligent Systems in Pro-cess Engineering, Part I: Paradigms from Product and Process Design, Academic Press, San Di-ego, pp. 93–146 (1995)Google Scholar
  13. 13.
    JÄger, D., Schleicher, A., Westfechtel, B.: AHEAD: A Graph-Based System for Modeling and Managing Development Processes. To appear in: M. Nagl, A. Schürr (Eds.): Proceedings AG-TIVE (Applications of Graph Transformations with Industrial Relevance), Rolduc, LNCS, Springer-Verlag (1999)Google Scholar
  14. 14.
    Jarke, M., Marquardt, W.: Design and Evaluation of Computer-Aided Process Modeling Tools. In: Davis, J.F., Stephanopoulos, G., Venkatasubramanian, V.: Intelligent Systems in Process En-gineering, AIChE Symp. Ser. 312, Vol. 92, 97–109.Google Scholar
  15. 15.
    Jarke, M., List, T., Weidenhaupt, K.: A Process-Integrated Conceptual Design Environment for Chemical Engineering, Proc. 18th Intl. Conf. on Conceptual Modeling (ER’ 99), Paris, France, 520–537 (1999)Google Scholar
  16. 16.
    Jeusfeld, M.A., Jarke, M., Nissen, H.W., Staudt, M.: Concept Base. Managing Conceptual Mod-els about Information Systems. In: Bernus, P., Mertins, K., Schmidt, G. (Eds.): Handbook on Architectures of Information Systems, Springer, Berlin Heidelberg (1998)Google Scholar
  17. 17.
    Krobb, C.: Entwicklung einer Spezialisierungshierarchie für Modellierungsschritte im objektorientierten Datenmodell VeDa. Diploma project LPT-thes-1997-05, Lehrstuhl für Prozess-technik, RWTH Aachen (1997).Google Scholar
  18. 18.
    Lohmann, B.: Ansätze zur Unterstützung des Arbeitsablaufes bei der rechnerbasierten Model-lierung verfahrenstechnischer Prozesse. Dissertation, Fortschritt-Berichte VDI, Series 3: Verfah-renstechnik, No 531, Düsseldorf (1998)Google Scholar
  19. 19.
    Mannarino, G.S., Leone, H.P., Henning, G.P.: A Task-Resource Based Framework for Process Operations Modeling. In: Proceedings of FOCAPO’ 98, Snowbird, Utah (1998)Google Scholar
  20. 20.
    Marquardt, W. and the VeDa group: The Chemical Engineering Data Model VeDa. Part 1-6, Technical Reports LPT-1998-01 to LPT-1998-06, Lehrstuhl für Prozesstechnik, RWTH Aa-chen (1998)Google Scholar
  21. 21.
    Marquardt, W., von Wedel, L., Bayer, B.: Perspectives on Lifecycle Process Modeling. In: Pro-ceedings of FOCAPD’99, Breckenridge, Colorado (1999)Google Scholar
  22. 22.
    Nagl, M., Westfechtel, B. (Eds.): Integration von Entwicklungssystemen in Ingenieuranwendun-gen — Substantielle Verbesserung der Entwicklungsprozesse. Springer, Heidelberg (1998)Google Scholar
  23. 23.
    Pohl, K.: Process-Centered Requirements Engineering. John Wiley & Sons, New York (1996)Google Scholar
  24. 24.
    Rittel, H., Kunz, W.: Issues as elements of information systems. Working Paper No. 131, Institute of Urban and Regional Development, Univ. of California, Berkeley, California (1970).Google Scholar
  25. 25.
    Subrahmanian, E., Konda, S.L., Dutoit, A., Reich, Y., Cunningham, D., Patrick, R., Thomas, M., Westerberg, A.: The n-dim Approach to Creating Design Support Systems. Proceedings of DETC’ 97, 1997 ASME Design Engineering Technical Conference, Sacramento, California (1997)Google Scholar
  26. 26.
    von Wedel, L., Marquardt, W.: ROME: A Repository to Support the Integration of Models over the Lifecycle of Model-based Engineering Processes, ESCAPE-10, Florence, Italy, May 7–10 (2000)Google Scholar
  27. 27.
    Westerberg, A., Subrahmanian, E., Reich, Y., Konda, S., and the n-dim group: Designing the Process Design Process. Computers chem. Egngn., Vol. 21, Suppl., S1–S9 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Markus Eggersmann
    • 1
  • Claudia Krobb
    • 1
  • Wolfgang Marquardt
    • 1
  1. 1.Lehrstuhl für ProzesstechnikAachenGermany

Personalised recommendations