Advertisement

Retrieval of Still Images by Content

  • John P. Eakins
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1980)

Abstract

This chapter summarises the current state of the art in content based image retrieval (CBIR). It discusses the need for image retrieval by content, and the types of query which might be encountered. It describes the main techniques currently used to retrieve images by content at both primitive and semantic levels, describes the features of some commercial and experimental CBIR systems, assesses the capabilities of current technology, and outlines possible future developments the field.

Keywords

Image Retrieval Relevance Feedback Colour Histogram Zernike Moment Moment Invariant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arkin,) E. M. et al (1991) An efficiently computable metric for comparing poly-gonal shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(3):209–216.CrossRefMathSciNetGoogle Scholar
  2. 2.
    Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B. (1990). R*-tree: An efficient and robust access method for points and rectangles. SIGMOD Record (ACM Special Interest Group on Management of Data), 19(2):322–331.Google Scholar
  3. 3.
    Biederman, I. (1987) Recognition-by-components: a theory of human image un-derstanding. Psychological Review, 94(2):115–147.CrossRefGoogle Scholar
  4. 4.
    Bjarnestam, A. (1998) Description of an image retrieval system. presented at The Challenge of Image Retrieval research workshop, Newcastle upon Tyne, 5 February 1998.Google Scholar
  5. 5.
    Brooks, R. A. (1983) Model-based three-dimensional interpretations of two-dimensional images. IEEE Transactions on Pattern Analysis and Machine In-telligence, 5(2):140–150.Google Scholar
  6. 6.
    Buijs J. M. and Lew M. S. (1999) Visual learning of simple semantics in Im-ageScape. in VISUAL99: 3rd International Conference on Visual Information and Information Systems. Lecture Notes in Computer Science, 1614:131–138.Google Scholar
  7. 7.
    Campbell, N. W. et al (1997) Interpreting Image Databases by Region Classification. Pattern Recognition, 30(4):555–563.CrossRefGoogle Scholar
  8. 8.
    Chang, S. K. et al (1987) Iconic indexing by 2-D strings. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(3):413–427.CrossRefGoogle Scholar
  9. 9.
    Chen, J. L. and Stockman, C. C. (1996) Indexing to 3D model aspects using 2D contour features. in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, 913–920.Google Scholar
  10. 10.
    Corridoni, J. M. et al (1998) Image retrieval by color semantics with incomplete knowledge. Journal of the American Society for Information Science, 49(3):267–2.CrossRefGoogle Scholar
  11. 11.
    Cortelazzo, G. et al (1994) Trademark shape description by string-matching tech-niques. Pattern Recognition, 27(8):1005–1018.CrossRefGoogle Scholar
  12. 12.
    Dickinson S. et al (1998) Viewpoint-invariant indexing for content-based image retrieval. in IEEE International Workshop on Content-based Access of Image and Video Databases (CAIVD’98), Bombay, India, 20–30.Google Scholar
  13. 13.
    Eakins, J. P. (1993) Design criteria for a shape retrieval system. Computers in Industry, 21:167–184.CrossRefGoogle Scholar
  14. 14.
    Eakins J. P. (1998) Techniques for image retrieval. Library and Information Briefings, in press.Google Scholar
  15. 15.
    Eakins J. P., Graham M. E., and Boardman, J. M. (1997) Evaluation of a trade-mark retrieval system. in 19th BCS IRSG Research Colloquium on Information Retrieval, Robert Gordon University, Aberdeen.Google Scholar
  16. 16.
    Eakins, J. P., Boardman, J. M., and Graham, M. E. (1998). Similarity retrieval of trademark images. IEEE Multimedia, 5(2):53–63.CrossRefGoogle Scholar
  17. 17.
    Eakins, J. P., and Graham, M. E. (1999) Content-Based Image Retrieval. JISC Technology Applications Programme Report, 39. Available at http://www.unn.ac.uk/iidr/CBIR/report.html.
  18. 18.
    Enser P. G. B. (1995) Pictorial information retrieval. Journal of Documentation, 51(2):126–170.CrossRefGoogle Scholar
  19. 19.
    Enser, P. G. B. and McGregor, C. G. (1992) Analysis of visual information retrieval queries. British Library Research and Development Report, 6104.Google Scholar
  20. 20.
    Evans, A. (1987) TELCLASS: a structural approach to TV classiffication. Audi-ovisual Librarian, 13(4):215–216.Google Scholar
  21. 21.
    Faloutsos, C. et al (1994) Effcient and effective querying by image content. Journal of Intelligent Information Systems, 3, 231–262.CrossRefGoogle Scholar
  22. 22.
    Feder, J. (1996) Towards image content-based retrieval for the World-Wide Web. Advanced Imaging, 11(1), 26–29.MathSciNetGoogle Scholar
  23. 23.
    Flickner, M. et al (1995). Query by image and video content: The QBIC system. Computer, 28(9):23–32.CrossRefGoogle Scholar
  24. 24.
    Forsyth, D. A. et al (1997). Finding pictures of objects in large collections of images. in Digital Image Access and Retrieval: 1996 Clinic on Library Applications of Data Processing (Heidorn, P. B. and Sandore, B, eds), 118–139. Graduate School of Library and Information Science, University of Illinois at Urbana-Champaign.Google Scholar
  25. 25.
    Gordon, C. (1990) An introduction to ICONCLASS. in Terminology for Museums Proceedings of an International Conference, Cambridge, 1988 (Roberts, D. A., ed), 233–244. Museum Documentation Association.Google Scholar
  26. 26.
    Greenberg, J. (1993). Intellectual control of visual archives: a comparison between the Art and Architecture Thesaurus and the Library of Congress Thesaurus for Graphic Materials. Cataloging & Classification Quarterly, 16(1):85–101.CrossRefGoogle Scholar
  27. 27.
    Gudivada, V. N. and Raghavan, V. V. (1995). Guest editors’ introduction: 5Content-based image retrieval systems. Computer, 28(9):18–22.CrossRefGoogle Scholar
  28. 28.
    Gudivada, V. N. and Raghavan, V. V. (1995). Design and evaluation of algorithms for image retrieval by spatial similarity. ACM Trans. on Information Systems, 13(2):115–144.CrossRefGoogle Scholar
  29. 29.
    Gupta, A. et al (1996). The Virage image search engine: an open framework for image management. in Storage and Retrieval for Image and Video Databases IV, Proc SPIE 2670:76–87.Google Scholar
  30. 30.
    Haralick, R. M. et al (1973). Textrual features for image classification. IEEE Transactions on Systems Man and Cybernetics, 3(6):610–621.MathSciNetCrossRefGoogle Scholar
  31. 31.
    Hastings, S. K. (1995). Query categories in a study of intellectual access to digitized art images. ASIS’ 95: proceedings of the 58th ASIS Annual Meeting, 32:3–8.Google Scholar
  32. 32.
    Hou, Y. T. et al (1992). A content-based indexing technique using relative geometry features. in Image Storage and Retrieval Systems, Proc SPIE 1662:59–68.Google Scholar
  33. 33.
    Hu, M. K. (1962). Visual pattern recognition by moment invariants. IRE Trans-actions on Information Theory, IT-8: 179–187.Google Scholar
  34. 34.
    Huang, T. et al (1997). Multimedia Analysis and Retrieval System (MARS) project in Digital Image Access and Retrieval. 1996 Clinic on Library Applications of Data Processing (Heidorn, P. B. and Sandore, B, eds), 101–117. Graduate School of Library and Information Science, University of Illinois at Urbana-Champaign.Google Scholar
  35. 35.
    Ingwersen, P. (1996). Cognitive perspectives of information retrieval interaction: elements of a cognitive IR theory. Journal of Documentation, 52(1):3–50.CrossRefGoogle Scholar
  36. 36.
    Jacobs, C. E. et al (1995). Fast Multiresolution Image Querying. Proceedings of SIGGRAPH 95, Los Angeles, CA (ACM SIGGRAPH Annual Conference Series, 1995), 277–286.Google Scholar
  37. 37.
    Jaimes, A. and Chang S. F. (1999). Model-based classiffication of visual information for content-based retrieval. in Storage and Retrieval for Image and Video Databases VII, Proc SPIE 3656:402–414.Google Scholar
  38. 38.
    Jain, A. K. et al (1996). Object matching using deformable templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(3):267–277.CrossRefGoogle Scholar
  39. 39.
    Jain, A. K. and Vailaya (1996). A Image retrieval using color and shape. Pattern Recognition, 29(8):1233–1244.CrossRefGoogle Scholar
  40. 40.
    Jin, J. S. et al (1998). Using browsing to improve content-based image retrieval in Multimedia Storage and Archiving Systems III, Proc SPIE 3527:101–109.Google Scholar
  41. 41.
    Keister, L. H. (1994). User types and queries: impact on image access systems in Challenges in indexing electronic text and images (Fidel, R. et al., eds). ASIS, 7–2Google Scholar
  42. 42.
    Kim, Y. S. and Kim, W. Y. (1998). Content-based trademark retrieval system using a visually salient feature. Image and Vision Computing, 16:931–939.CrossRefGoogle Scholar
  43. 43.
    Kurniawati, R. et al (1997). The SS+ tree: an improved index structure for similar-ity searches in high-dimensional feature space. in Storage and Retrieval for Image and Video Databases V(Sethi, I. K. and Jain, R. C., eds), Proc SPIE 3022:110–120.Google Scholar
  44. 44.
    Lee, D. et al (1994). Query by image content using multiple objects and multiple features: user interface issues. in Proceedings of ICIP-94, International Conference on Image Processing, Austin, Texas, 76–80.Google Scholar
  45. 45.
    Lee, C. S. et al (1999). Information embedding based on users’ relevance feed-back for image retrieval. in Multimedia Storage and Archiving Systems IV (S Panchanathan et al, eds), Proc SPIE 3846:294–304.Google Scholar
  46. 46.
    Leung, T. and Malik J. (1999). Recognizing surfaces using three-dimensional tex-tons. presented at Seventh IEEE International Conference on Computer Vision (ICCV-99), Corfu, Greece, 2:1010–1017.Google Scholar
  47. 47.
    Levine, M. D. (1985). Vision in man and machine, ch 10. McGraw-Hill, NYGoogle Scholar
  48. 48.
    Lewis, P. H. et al (1996). Media-based navigation with generic links. in Proceedings of the Seventh ACM Conference on Hypertext, New York, 215–223.Google Scholar
  49. 49.
    Lewis, P. H. et al (1997). Towards multimedia thesaurus support for media-based navigation. in Image Databases and Multimedia Search, (Smeulders, A. W. M. and Jain, R. C., eds), 111–118. World Scientific, AmsterdamGoogle Scholar
  50. 50.
    Lin, K.I., Jagadish, H. V., and Faloutsos, C. (1994). The TV-tree — an index struc-ture for high-dimensional data. VLDB Journal: Special Issue on Spatial Database Systems, 3(4):517–542.Google Scholar
  51. 51.
    Liu, F. and Picard, R. W. (1996). Periodicity, directionality and randomness: Wold features for image modeling and retrieval. IEEE Trans. Pattern Analysis and Machine Intelligence, 18(7):722–733.CrossRefGoogle Scholar
  52. 52.
    Ma, W.Y. and Manjunath, B. S. (1997). NeTra: A toolbox for navigating large image databases. In Proc. of the IEEE Int. Conf. on Image Processing, 562–571.Google Scholar
  53. 53.
    Ma, W. Y. and Manjunath, B. S. (1998). A texture thesaurus for browsing large aerial photographs. Journal of the American Society for Information Science 49(7):633–648.CrossRefGoogle Scholar
  54. 54.
    Manjunath, B. S. and Ma, W.-Y. (1996). Texture features for browsing and re-trieval of image data. IEEE Trans. Pattern Analysis and Machine Intelligence, 18(8):837–42.CrossRefGoogle Scholar
  55. 55.
    Manmatha, R. and avela, S. (1997). A syntactic characterization of appearance and its application to image retrieval. in Human Vision and Electronic Imaging II (owitz BE and Pappas TN eds), SPIE 3016, 484–95.Google Scholar
  56. 56.
    Markey, K. (1984). Interindexer consistency tests: a literature review and report of a test of consistency in indexing visual materials. Library and Information Science Research, 6:155–77.Google Scholar
  57. 57.
    Markkula, M. and Sormunen, E. (1998). Searching for photos-journalists’ practices in pictorial IR. presented at The Challenge of Image Retrieval research workshop, Newcastle upon Tyne, February 1998.Google Scholar
  58. 58.
    Mehrotra, R. and Gary J. E. (1995). Similar-shape retrieval in shape data man-agement. IEEE Computer, 28(9):57–62.Google Scholar
  59. 59.
    Minka, T. (1996). An image database browser that learns from user interaction.MIT Media Laboratory Technical Report, #365.Google Scholar
  60. 60.
    Nastar, C. et al (1998). Surfimage: a flexible content-based image retrieval system presented at ACM Multimedia’ 98, Bristol, UK.Google Scholar
  61. 61.
    Niblack, W. et al (1998). Updates to the QBIC system. in Storage and Retrieval for Image and Video Databases VI(Sethi, I. K. and Jain, R. C., eds), Proc SPIE 3312, 150–161.Google Scholar
  62. 62.
    Ogle, V. E. and Stonebraker, M. (1995). CHABOT: Retrieval from a relational database of images. IEEE Computer, 28(9):40–48.Google Scholar
  63. 63.
    Oliva, A. et al (1999). Global semantic classification of scenes using power spectrum templates. presented at CIR-99: The Challenge of Image Retrieval, Newcastle upon Tyne, UK, February 1999.Google Scholar
  64. 64.
    Opitz, H. et al (1969). Workpiece classification and its industrial application.International Journal of Machine Tool Design Research, 9:39–50.CrossRefGoogle Scholar
  65. 65.
    Paquet, E. and Rioux, M. (1998). Content-based access of VRML libraries Lecture Notes in Computer Science 1464:20–32.Google Scholar
  66. 66.
    Pentland, A. et al (1996). Photobook: tools for content-based manipulation of image databases. International Journal of Computer Vision, 18(3)233–254.CrossRefGoogle Scholar
  67. 67.
    Ravela, S. and Manmatha, R. (1998a). Retrieving images by appearance. in Pro-ceedings of IEEE International Conference on Computer Vision (IICV98), Bombay, India, 608–613.Google Scholar
  68. 68.
    Ravela, S. and Manmatha, R. (1998). On computing global similarity in images. in Proceedings of IEEE Workshop on Applications of Computer Vision (WACV98), Princeton, NJ, 82–87.Google Scholar
  69. 69.
    Ren, M. et al (2000). Human perception of trademark images: implications for retrieval system design. Journal of Electronic Imaging, in press.Google Scholar
  70. 70.
    Rui, Y. et al (1997). Relevance feedback techniques in interactive content-based image retrieval. in Storage and Retrieval for Image and Video Databases VI(Sethi, I. K. and Jain, R. C., eds), Proc SPIE 3312: 25–36.Google Scholar
  71. 71.
    Rui, Y., Huang, T. S., Ortega, M., and Mehrotra, S. (1998). Relevance feedback: A power tool in interactive content-based image retrieval. IEEE Tran on Circuits and Systems for Video Technology, 8(5):644–655.CrossRefGoogle Scholar
  72. 72.
    Santini, S. and Jain, R. (1997). Do images mean anything? In Proc. of the Int. Conf. on Image Analysis and Processing, ICIP-97, 564–567.Google Scholar
  73. 73.
    Scassellati, B. et al (1994). Retrieving images by 2-D shape: a comparison of computation methods with human perceptual judgements. in Storage and Retrieval for Image and Video Databases II (Niblack, W. R. and Jain, R. C., eds), Proc SPIE2185:2–14.Google Scholar
  74. 74.
    Schiele, B. and Crowley J. L. (1997). The concept of visual classes for object classification. in Proceedings of SCIA’97, Tenth Scandinavian Conference on Image Analysis, Lappeenranta, Finland, 43–50.Google Scholar
  75. 75.
    Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, in press.Google Scholar
  76. 76.
    Smith, J. R. and Chang S. F. (1994). Transform features for texture classifica-tion and discrimination in large image databases. in Proceedings ICIP-94, Austin,Texas, 407–411.Google Scholar
  77. 77.
    Smith, J. R. and Chang S. F. (1997a). Querying by color regions using the Visu-alSEEk content-based visual query system. Intelligent Multimedia Information Retrieval (Maybury, M. T., ed). AAAI Press, Menlo Park, CA, 23–41.Google Scholar
  78. 78.
    Smith, J. R. and Chang S. F. (1997b). An image and video search engine for the World-Wide Web. in Storage and Retrieval for Image and Video Databases V (Sethi, I. K. and Jain, R. C., eds), Proc SPIE 3022:84–95.Google Scholar
  79. 79.
    Srihari, R. K. (1995). Automatic indexing and content-based retrieval of captioned images. IEEE Computer, 28(9):49–56.Google Scholar
  80. 80.
    Stark, H-G (1996). On image retrieval with wavelets. International Journal of Imaging Systems and Technology, 7:200–210.CrossRefGoogle Scholar
  81. 81.
    Stricker, M. and Dimai, A. (1996). Color indexing with weak spatial constraints in Storage and Retrieval for Image and Video Databases IV (Sethi, I. K. and Jain, R. C., eds), Proc SPIE 2670:29–4.Google Scholar
  82. 82.
    Stricker, M. and Orengo, M. (1995). Similarity of color images. in Storage and Retrieval for Image and Video Databases III (Niblack, W. R. and Jain, R. C., eds), Proc SPIE 2420:381–392.Google Scholar
  83. 83.
    Swain, M. J. and Ballard, D. H. (1991). Color indexing. International Journal of Computer Vision, 7(1):11–32.CrossRefGoogle Scholar
  84. 84.
    Szummer, M. and Picard, R. (1998). Indoor-outdoor image classification. in IEEE International Workshop on Content-based Access of Image and Video Databases (CAIVD98), Bombay, India, 42–51.Google Scholar
  85. 85.
    Tamura, H., Mori, S., and Yamawaki, T. (1978). Texture features corresponding to visual perception. IEEE Trans. on Systems, Man, and Cybernetics, 8(6):460–473.CrossRefGoogle Scholar
  86. 86.
    Teh, C. H. and Chin, R. T. (1988). Image analysis by methods of moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(4):496–513.zbMATHCrossRefGoogle Scholar
  87. 87.
    Vailaya, A. et al (1998). On image classification: city images vs landscapes. Pattern Recognition, 31(12):921–1936.CrossRefGoogle Scholar
  88. 88.
    Vailaya, A. and Jain, A. K. (1999). Incremental learning for Bayesian classification of images. presented at IEEE International Conference on Image Processing (ICIP’99), Kobe, Japan, October 1999.Google Scholar
  89. 89.
    Vleugels, J. and Veltkamp, R. (1999). Efficient image retrieval through vantage objects. presented at VISUAL99: 3rd International Conference on Visual Inform-ation and Information Systems. Lecture Notes in Computer Science 1614:769–776.Google Scholar
  90. 90.
    Wactlar, H. D. et al (1996). Intelligent access to digital video: the Informedia project. IEEE Computer, 29(5):46–52.Google Scholar
  91. 92.
    Zahn, C. T. and Roskies, C. Z. (1972). Fourier descriptor for plane closed curves.IEEE Transactions on Computers, C-21:269–281.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • John P. Eakins
    • 1
  1. 1.Institute for Image Data ResearchUniversity of Northumbria at NewcastleUK

Personalised recommendations