Pheromone Modification Strategies for Ant Algorithms Applied to Dynamic TSP

  • Michael Guntsch
  • Martin Middendorf
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2037)

Abstract

We investigate strategies for pheromone modification of ant algorithms in reaction to the insertion/deletion of a city of Traveling Salesperson Problem (TSP) instances. Three strategies for pheromone diversification through equalization of the pheromone values on the edges are proposed and compared. One strategy acts globally without consideration of the position of the inserted/deleted city. The other strategies perform pheromone modification only in the neighborhood of the inserted/deleted city, where neighborhood is defined differently for the two strategies. We furthermore evaluate different parameter settings for each of the strategies.

Keywords

Entropy Eter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Bonabeau, M. Dorigo, G. Theraulaz: Swarm Intelligence: From Natural to Artificial Systems, Oxford University Press, New York, 1999.MATHGoogle Scholar
  2. 2.
    M. Dorigo, G. Di Caro, “The ant colony optimization meta-heuristic”, in D. Corne, M. Dorigo, F. Glover (Eds.), New Ideas in Optimization, McGraw-Hill, 11–32, 1999.Google Scholar
  3. 3.
    G. Di Caro, M. Dorigo, “AntNet: Distributed Stigmergetic Control for Communications Networks,” Journal of Artificial Intelligence Research, 9: 317–365, 1998.MATHGoogle Scholar
  4. 4.
    R. Schoonderwoerd, O. Holland, J. Bruten, L. Rothkrantz, “Ant-based Load Balancing in Telecommunications Networks,” Adaptive Behavior, 1996.Google Scholar
  5. 5.
    B. Bullnheimer, R.F. Hartl, C. Strauss, “A New Rank Based Version of the Ant System-A Computational Study,” CEJOR, 7: 25–38, 1999.MathSciNetMATHGoogle Scholar
  6. 6.
    M. Dorigo, “Optimization, Learning and Natural Algorithms (in Italian), ” PhD Thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy, pp.140, 1992.Google Scholar
  7. 7.
    M. Dorigo, L.M. Gambardella, “Ant-Q: A Reinforcement Learning approach to the traveling salesman problem,” Proceedings of ML-95, Twelfth Intern. Conf. on Machine Learning, Morgan Kaufmann, 252–260, 1995.Google Scholar
  8. 8.
    M. Dorigo, and L.M. Gambardella, “Ant colony system: A cooperative learning approach to the travelling salesman problem,” IEEE TEC, 1: 53–66, 1997.Google Scholar
  9. 9.
    M. Dorigo, V. Maniezzo, A. Colorni, “The Ant System: Optimization by a Colony of Cooperating Agents,” IEEE Trans. Systems, Man, and Cybernetics-Part B, 26: 29–41, 1996.CrossRefGoogle Scholar
  10. 10.
    T. Stützle, H. Hoos, “Improvements on the ant system: Introducing MAX(MIN) ant system,” in G.D. Smith et al. (Eds.), Proc. of the International Conf. on Artificial Neutral Networks and Genetic Algorithms, Springer-Verlag, 245–249, 1997.Google Scholar
  11. 11.
    L.-M. Gambardella, E.D. Taillard, M. Dorigo, “Ant Colonies for the Quadratic Assignment Problem,” Journal of the Operational Research Society, 50: 167–76, 1999.CrossRefMATHGoogle Scholar
  12. 12.
    T. Stützle, H. Hoos, “MAX-MIN Ant System,” Future Generation Computer Systems, 16: 889–914, 1999.CrossRefMATHGoogle Scholar
  13. 13.
  14. 14.
    D. Merkle, M. Middendorf, H. Schmeck, “Ant Colony Optimization for Resource-Constrained Project Scheduling,” Proc. GECCO-2000, 893–900, 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Michael Guntsch
  • Martin Middendorf
    • 1
  1. 1.Institute for Applied Computer Science and Formal Description MethodsUniversity of KarlsruheKarlsruheGermany

Personalised recommendations