Advertisement

Recent Advances in the Theory of Filler Networking in Elastomers

  • Gert Heinrich
  • Manfred Klüppel
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 160)

Abstract

The viscoelastic properties of (mostly carbon black) filled elastomers are reviewed with emphasis on the strain-dependence of the complex dynamic modulus (Payne effect). Considerable progress has been made in the past in relating the typical dynamical behavior at low strain amplitudes to a cyclic breakdown and reagglomeration of physical filler-filler bonds in typical clusters of varying size, including the infinite filler network. Common features between the phenomenological agglomeration/deagglomeration Kraus approach and very recent semi-microscopical networking approaches (two aggregate VTG model, links-nodes-blobs model, kinetical cluster-cluster aggregation) are discussed. All semi-microscopical models contain the assumption of geometrical arrangements of sub-units (aggregates) in particular filler network structures, resulting for example from percolation or kinetical cluster-cluster aggregation. These concepts predict some features of the Payne effect that are independent of the specific types of filler. These features are in good agreement with experimental studies. For example, the shape exponent m of the storage modulus, G′, drop with increasing deformation is determined by the structure of the cluster network. Another example is a scaling relation predicting a specific power law behavior of the elastic modulus as a function of the filler volume fraction. The exponent reflects the characteristic structure of the fractal filler clusters and of the corresponding filler network. The existing concepts of the filler network breakdown and reformation appear to be adequate in describing the deformation-dependence of dynamic mechanical properties of filled rubbers. The different approaches suggest in a common manner that there is a change of filler structure with increasing dynamic strain. However, in all cases additional assumptions are made about the accompanying energy dissipation process, imparting higher hysteresis to the filled rubber. This process may be slippage of entanglements (slip-links) in the transition layer between bound rubber layer and mobile rubber phase, and/or partially release of elastically ‘dead’ immobilized rubber trapped within the filler network or agglomerates.

The theoretical understanding of filled elastomers has been improved to the extent that now a connection can be made between the filler structures on larger length scales and the viscoelastic properties of rubbery materials.

Keywords

Elastomers Filler networking Fractal filler structures Payne effect Viscoelasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Payne AR (1962) J Appl Polym Sci 6:57CrossRefGoogle Scholar
  2. 2.
    Payne AR (1963) J Appl Polym Sci 7:873CrossRefGoogle Scholar
  3. 3.
    Payne AR (1964) J Appl Polym Sci 8:2661CrossRefGoogle Scholar
  4. 4.
    Payne AR (1964) Trans IRI40:T135Google Scholar
  5. 5.
    Payne AR (1965) In: Kraus G (ed) Reinforcement of elastomers. Interscience Publisher, New York, chap 3Google Scholar
  6. 6.
    Payne AR (1972) J Appl Polym Sci 16:1191CrossRefGoogle Scholar
  7. 7.
    Payne AR (1963) Rubber Chem Technol 36:432Google Scholar
  8. 8.
    Medalia AI (1973) Rubber Chem Technol 46:877Google Scholar
  9. 9.
    Medalia AI ( 1974) Rubber Chem Technol 47:411Google Scholar
  10. 10.
    Voet A, Cook FR (1967) Rubber Chem Technol 40:1364Google Scholar
  11. 11.
    Voet A, Cook FR (1968) Rubber Chem Technol 41:1215Google Scholar
  12. 12.
    Dutta NK, Tripathy DK (1989) Kautsch Gummi Kunstst 42:665Google Scholar
  13. 13.
    Dutta NK, Tripathy DK (1992) J Appl Polym Sci 44:1635CrossRefGoogle Scholar
  14. 14.
    Dutta NK, Tripathy DK (1990) Polym Test 9:3CrossRefGoogle Scholar
  15. 15.
    Ulmer JD, Hergenrother WL, Lawson DF (1998) Rubber Chem Technol 71:637Google Scholar
  16. 16.
    Wang M-J, Patterson WJ, Ouyang GB (1998) Kautsch Gummi Kunstst 51:106Google Scholar
  17. 17.
    Freund B, Niedermeier W (1998) Kautsch Gummi Kunstst 51:444Google Scholar
  18. 18.
    Mukhopadhyay K, Tripathy DK (1992) J Elastomers Plast 24:203CrossRefGoogle Scholar
  19. 19.
    Wang M-J (1998) Rubber Chem Technol 71:520Google Scholar
  20. 20.
    Bischoff A, Klüppel M, Schuster RH (1998) Polym Bull 40:283CrossRefGoogle Scholar
  21. 21.
    Vieweg S, Unger R, Heinrich G, Donth E (1999) J Appl Polym Sci 73:495CrossRefGoogle Scholar
  22. 22.
    Payne AR, Watson WF (1963) Rubber Chem Technol 36:147Google Scholar
  23. 23.
    Amari T, Mesugi K, Suzuki H (1997) Prog Org Coat 31:171CrossRefGoogle Scholar
  24. 24.
    Payne AR, Wittaker RE (1970) Rheol Acta 9:91CrossRefGoogle Scholar
  25. 25.
    Payne AR, Wittaker RE (1970) Rheol Acta 9:97CrossRefGoogle Scholar
  26. 26.
    Brown JD ( 1997) Nonlinear dynamic behavior of filled elastomers at small strain amplitudes. PhD Thesis, Rensselaer Polytechnic Institute, Troy, New York; Chazeau L, Brown JD,Yanyo LC, Sternstein SS (2000) Polym Compos 21:202Google Scholar
  27. 27.
    Wilhelm M, Reinheimer P, Orteifer M (1999) Rheol Acta 38:349; (1999) Kautsch Gummi Kunstst 52:754CrossRefGoogle Scholar
  28. 28.
    Voet A, Morawski JC (1974) Rubber Chem Technol 47:765Google Scholar
  29. 29.
    Giuliani G, Volpi A (1985) Developments in dynamic testing procedures. Paper No 79, ACS Rubber Division Meeting, Cleveland, OhioGoogle Scholar
  30. 30.
    Dutta NK, Tripathy DK, Medalia AI ( 1973) Rubber World 168:49Google Scholar
  31. 31.
    Lion A (1998) J Mech Phys Solids 46:895CrossRefGoogle Scholar
  32. 32.
    Lion A (1999) Rubber Chem Technol 72:410Google Scholar
  33. 33.
    Medalia AI (1978) Rubber Chem Technol 51:437Google Scholar
  34. 34.
    Medalia AI, Laube SG (1978) Rubber Chem Technol 51:89Google Scholar
  35. 35.
    Sircar AK, Lamond TG (1975) Rubber Chem Technol 48:79,89Google Scholar
  36. 36.
    Kraus G (1984) J App Polym Sci, Appl Polym Symp 39:75Google Scholar
  37. 37.
    Ouyang GB, Tokita N, Wang M-J (1995) Paper No 108, ACS Rubber Division Meeting, Cleveland, OhioGoogle Scholar
  38. 38.
    Payne AR, Wittaker RE (1971) Rubber Chem Technol 44:440Google Scholar
  39. 39.
    Roland CM, Lee GF (1989) NTIS Rep AD-A2 12824Google Scholar
  40. 40.
    Ulmer JD, Hess WM, Chirico VE (1974) Rubber Chem Technol 47:729Google Scholar
  41. 41.
    Gui KE, Wilkinson CS Jr, Gehmann SD (1952) Ind Eng Chem 44:720CrossRefGoogle Scholar
  42. 42.
    Smit PPA (1966) Rheol Acta 5:277CrossRefGoogle Scholar
  43. 43.
    Maier P, Göritz D (1998) Kautsch Gummi Kunstst 49:18Google Scholar
  44. 44.
    Dean GD, Duncan JC, Johnson AF (1984) Polym Test 4:225CrossRefGoogle Scholar
  45. 45.
    Martin RE, Malguarnera SC (1981) J Elastomers Plast 13:139CrossRefGoogle Scholar
  46. 46.
    Ahmadi HR, Muhr AH (1997) Plast Rubber Compos Process Appl 26:451Google Scholar
  47. 47.
    Resh WF (Sept 1990) SAE Tech Paper Ser 901757, Passenger Car Meeting and Exposition, Dearborn, MichiganGoogle Scholar
  48. 48.
    Fujita T, Suzuki S, Fujita S (1989) ASME, PVP, Seismic Shock Vibration Isolation 181:23Google Scholar
  49. 49.
    Iwan WD (1967) J Appl Mech (ASME) 612Google Scholar
  50. 50.
    Turner DM (1988) Plast Rubber Compos Process Appl 9:197Google Scholar
  51. 51.
    Coveney VA, Johnson DE, Turner DM (1995) Rubber Chem Technol 68:660Google Scholar
  52. 52.
    Coveney VA, Johnson DE (2000) Rubber Chem Technol 73:565Google Scholar
  53. 53.
    Coveney VA, Johnson DE (1999) Rubber Chem Technol 72:673Google Scholar
  54. 54.
    Tschoegl NW (1989) The phenomenological theory of linear viscoelasticity. Springer, Berlin Heidelberg New YorkGoogle Scholar
  55. 55.
    Harris JA (1987) Rubber Chem Technol 60:870Google Scholar
  56. 56.
    Heinrich G, Vilgis TA (1995) Macromol Chem Phys Macromol Symp 93:253Google Scholar
  57. 57.
    Vieweg S, Unger R, Schröter K, Donth E, Heinrich G (1995) Polym Network Blends 5:199Google Scholar
  58. 58.
    Huber G, Vilgis TA (1999) Kautsch Gummi Kunstst 52:102Google Scholar
  59. 59.
    Huber G (1997) PhD thesis, University of Mainz, GermanyGoogle Scholar
  60. 60.
    Witten TA, Rubinstein M, Colby RH (1993) J Phys II (France) 3:367CrossRefGoogle Scholar
  61. 61.
    De Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca, LondonGoogle Scholar
  62. 62.
    Bunde A, Havlin S (1996) (eds) Fractals and disordered systems. Springer, Berlin Heidelberg New YorkGoogle Scholar
  63. 63.
    Klüppel M, Heinrich G (1995) Rubber Chem Technol 68:623Google Scholar
  64. 64.
    Klüppel M, Schuster RH, Heinrich G (1997) Rubber Chem Technol 70:243Google Scholar
  65. 65.
    Huber G, Vilgis TA, Heinrich G (1996) J Phys Condens Matter 8:409CrossRefGoogle Scholar
  66. 66.
    Ulmer JD (1996) Rubber Chem Technol 69:15Google Scholar
  67. 67.
    Wang M-J, Patterson WJ, Ouyang GB (1996) Paper No 33, ACS Rubber Division Meeting, Montreal, CanadaGoogle Scholar
  68. 68.
    Gerspacher M, O’Farrell CP (1992) Kautsch Gummi Kunstst 45:97; Gerspacher M (1993) Dynamic viscoelastic properties of loaded elastomers. In: Donnet J-B, Bansal RC, Wang M-J (eds) Carbon black. science and technology. Marcel Dekker, New York Basel Hong KongGoogle Scholar
  69. 69.
    Le Méhauté A (1991) Fractal geometries. Theory and applications. CRC Press, Boca Raton Ann Arbor London; Le Méhauté A, Crepy G (1983) Solid State Ionics 9/10:17Google Scholar
  70. 70.
    Sapoval B (1991) Fractal electrodes, fractal membranes, and fractal catalysts. In: Bunde A, Havlin S (eds) Fractals and disordered system. Springer, Berlin Heidelberg New YorkGoogle Scholar
  71. 71.
    Liu SH (1985) Phys Rev Lett 55:529CrossRefGoogle Scholar
  72. 72.
    Blunt M (1989) J Phys A: Math Gen 22:1179CrossRefGoogle Scholar
  73. 73.
    Sapoval B (1994) Phys Rev Lett 73:3314CrossRefGoogle Scholar
  74. 74.
    Le Méhauté A, Gerspacher M, Tricot C (1993) Fractal geometry. In: Donnet J-B, Bansal RC, Wang M-J (eds) Carbon black. Science and technology. Marcel Dekker, New York Basel Hong KongGoogle Scholar
  75. 75.
    Le Méhauté A (1984) J Stat Phys 36:665CrossRefGoogle Scholar
  76. 76.
    Zerda TW, Yang H, Gerspacher M (1992) Rubber Chem Technol 65:130Google Scholar
  77. 77.
    Schröder A, Klüppel M, Schuster RH (1999) Kautsch Gummi Kunstst 52:814; (2000) Kautsch Gummi Kunstst 53:257Google Scholar
  78. 78.
    Klüppel M, Schramm J (2000) Macromol Theory Simul 9:742CrossRefGoogle Scholar
  79. 79.
    Klüppel M, Schramm J (1999) An advanced micromechanical model of hyperelasticity and stress softening of reinforced rubbers. In: Dorfmann A, Muhr A (eds) Constitutive models for rubber. A.A. Balkema,, RotterdamGoogle Scholar
  80. 80.
    Van de Walle A, Tricot C, Gerspacher M (1994) Paper No 10, ACS Rubber Division Meeting, Pittsburgh, PennsylvaniaGoogle Scholar
  81. 81.
    Gerspacher M, O’Farrell CP, Tricot C, Nikiel L, Yang HA (1996) Paper No 74, ACS Rubber Division Meeting, Louisiana, KentuckyGoogle Scholar
  82. 82.
    Van de Walle A, Tricot C, Gerspacher M (1996) Kautsch Gummi Kunstst 49:172Google Scholar
  83. 83.
    Welsh FE, Richmond BR, Keach CB, Emerson RJ (1995) Paper No 59, ACS Rubber Division Meeting, PhiladelphiaGoogle Scholar
  84. 84.
    Yamaguchi T, Kurimoto I, Ohashi K, Okita T (1989) Kautsch Gummi Kunstst 42:403Google Scholar
  85. 85.
    Wolff S, Wang M-J, Tan E-H (1994) Kautsch Gummi Kunstst 47:102Google Scholar
  86. 86.
    Gent AN, Hwang Y-C (1988) Rubber Chem Technol 61:630Google Scholar
  87. 87.
    Gent AN, Park B (1986) Rubber Chem Technol 59:77Google Scholar
  88. 88.
    Heinrich G, Vilgis TA (1993) Macromolecules 26:1109CrossRefGoogle Scholar
  89. 89.
    Wolff S, Wang M-J, Tan E-H (1993) Rubber Chem Technol 61:102Google Scholar
  90. 90.
    Lin C-R, Lee Y-D (1996) Macromol Theory Simul 5:1075; (1997) Macromol Theory Simul 6:339CrossRefGoogle Scholar
  91. 91.
    Kantor Y, Webman I (1984) Phys Rev Lett 52:1891CrossRefGoogle Scholar
  92. 92.
    Schuster RH, Klüppel M, Schramm J, Heinrich G (1998) Paper No 56, ACS Rubber Division Meeting, IndianapolisGoogle Scholar
  93. 93.
    Meakin P (1990) Prog Solid State Chem 20:135; (1988) Adv Colloid Interface Sci 28:249CrossRefGoogle Scholar
  94. 94.
    Vieweg S (1997) PhD thesis, University of Halle, GermanyGoogle Scholar
  95. 95.
    Vieweg S, Unger R, Hempel E, Donth E (1998) J Non-Cryst Solids 235/237:470CrossRefGoogle Scholar
  96. 96.
    Litvinov VM, Steeman PAM (1999) Macromolecules 32:8476CrossRefGoogle Scholar
  97. 97.
    Dutta NK, Roy Choudhury N, Haidar B, Vidal A, Donnet J-B (1994) Polymer 35:4293CrossRefGoogle Scholar
  98. 98.
    Früh T (1996) PhD thesis, University of Hannover, GermanyGoogle Scholar
  99. 99.
    Hofmann W (1989) Rubber technology handbook. Hanser Publishers, München Wien New YorkGoogle Scholar
  100. 100.
    Raos G, Allegra G, Assecondi L, Croci C (2000) Comput Theor Polym Sci 10:149CrossRefGoogle Scholar
  101. 101.
    Wang M-J (1999) Rubber Chem Technol 72:430Google Scholar
  102. 102.
    Kastner A, Alig I, Heinrich G, Klüppel M (2002) Polym Bull (in preparation)Google Scholar
  103. 103.
    Fitzgerald ER (1982) Polym Bull 8:331Google Scholar
  104. 104.
    Fitzgerald ER (1982) Rubber Chem Technol 55:1547Google Scholar
  105. 105.
    Heinrich G (1997) Gummi Fasern Kunstst 50:775Google Scholar
  106. 106.
    Heinrich G (1992) Filler-filler interaction. Internal Research Report Continental AG AN92/4.3/20 (unpublished)Google Scholar
  107. 107.
    Susteric Z (1989) Makromol Chem Makromol Symp 23:329Google Scholar
  108. 108.
    Cai JJ, Salovey R (1999) J Mat Sci 34:4719CrossRefGoogle Scholar
  109. 109.
    Lanzl T, Ludwig J, Kreitmeier S, Göritz D (2000) Kautsch Gummi Kunstst 53:623Google Scholar
  110. 110.
    Karásek L, Meissner B, Asai S, Sumita M (1996) Polym J 28:121CrossRefGoogle Scholar
  111. 111.
    Lin C-R, Chen Y-C, Chang C-Y (2001) Macromol Theory Simul (in press)Google Scholar
  112. 112.
    Niedermeier W (1998) Paper No 28, ACS Rubber Division Meeting, Nashville, TennesseeGoogle Scholar
  113. 113.
    Eggers H, Schümer P (1996) Rubber Chem Technol 69:253Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Gert Heinrich
    • 1
  • Manfred Klüppel
    • 2
  1. 1.Continental AG, Strategic TechnologyHannoverGermany
  2. 2.Deutsches Institut für Kautschuktechnologie e. V.HannoverGermany

Personalised recommendations