Determining Progression in Glaucoma Using Visual Fields

  • Andrew Turpin
  • Eibe Frank
  • Mark Hall
  • Ian H. Witten
  • Chris A. Johnson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2035)

Abstract

The standardized visual field assessment, which measures visual function in 76 locations of the central visual area, is an important diagnostic tool in the treatment of the eye disease glaucoma. It helps determine whether the disease is stable or progressing towards blindness, with important implications for treatment. Automatic techniques to classify patients based on this assessment have had limited success, primarily due to the high variability of individual visual field measurements.

The purpose of this paper is to describe the problem of visual field classification to the data mining community, and assess the success of data mining techniques on it. Preliminary results show that machine learning methods rival existing techniques for predicting whether glaucoma is progressing—though we have not yet been able to demonstrate improvements that are statistically significant. It is likely that further improvement is possible, and we encourage others to work on this important practical data mining problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Armitage and G. Berry. Statistical Methods in Medical Research. Blackwell Scientific Pulications, Oxford, third edition, 1994.Google Scholar
  2. 2.
    M.K. Birch, P.K. Wishart, and N.P. O’Donnell. Determining progressive visual field loss in serial humphrey visual fields. Ophthomology, 102(8):1227–1235, 1995.Google Scholar
  3. 3.
    L. Brigatti, K. Nouri-Mahdavi, M. Weitzman, and J. Caprioli. Automatic detection of glaucomatous visual field progression with neural networks. Archives of Ophthalmol., 115:725–728, 1997.Google Scholar
  4. 4.
    R.O. Burk, A. Tuulonen, and P.J. Airaksinen. Laser scanning tomography of localised nerve fibre layer defects. British J. of Ophthalmol, 82(10):1112–1117, 1998.CrossRefGoogle Scholar
  5. 5.
    B.C. Chauhan and C.A. Johnson. Test-retest variability of frequency-doubling perimetry and conventional perimetry in glaucoma patients and normal subjects. Investigative Ophthomology and Vision Science, 40(3):648–656, 1999.Google Scholar
  6. 6.
    B.C. Chauhan, S.M. Drance, and G.R. Douglas. The use of visual field indices in detecting changes in the visual field in glaucoma. Investigative Ophthomology and Vision Science, 31(3):512–520, 1990.Google Scholar
  7. 7.
    C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273–297, 1995.MATHGoogle Scholar
  8. 8.
    D.P. Crabb, F.W. Fitzke, A.I. McNaught, D.F. Edgar, and R.A. Hitchings. Improving the prediction of visual field progression in glaucoma using spatial processing. Ophthomology, 104(3):517–524, 1997.Google Scholar
  9. 9.
    M. Fingeret and T.L. Lewis. Primary care of the glaucomas. Mc Graw Hill, New York, second edition, 2001.Google Scholar
  10. 10.
    J.H. Friedman. Greedy function approximation: A gradient boosting machine. Technical report, Department of Statistics, Stanford University, CA, 1999.Google Scholar
  11. 11.
    D.B. Henson, S.E. Spenceley, and D.R. Bull. Artificial neural network analysis of noisy visual field data in glaucoma. Art. Int. in Medicine, 10:99–113, 1997.CrossRefGoogle Scholar
  12. 12.
    R.C. Holte. Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11:63–91, 1993.MATHCrossRefGoogle Scholar
  13. 13.
    J. Katz. Scoring systems for measuring progression of visual field loss in clinical trials of glaucoma treatment. Ophthomology, 106(2):391–395, 1999.CrossRefGoogle Scholar
  14. 14.
    S. Keerthi, S. Shevade, C. Bhattacharyya, and K. Murthy. Improvements to platt’s SMO algorithm for SVM classifier design. Technical report, Dept. of CSA, Banglore, India, 1999.Google Scholar
  15. 15.
    J.R. Landis and G.G. Koch. An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics, 33(2):363–374, 1977.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    T. Leitman, J. Eng, J. Katz, and H.A. Quigley. Neural networks for visual field analysis: how do they compare with other algorithms. J Glaucoma, 8:77–80, 1999.Google Scholar
  17. 17.
    M.C. Leske, A. Heijl, L. Hyman, and B. Bengtsson. Early manifest glaucoma trial: design and baseline data. Ophthomology, 106(11):2144–2153, 1999.CrossRefGoogle Scholar
  18. 18.
    S. Mandava, M. Zulauf, T. Zeyen, and J. Caprioli. An evaluation of clusters in the glaucomatous visual field. American J. of Ophthalmol., 116(6):684–691, 1993.Google Scholar
  19. 19.
    R.K. Morgan, W.J. Feuer, and D.R. Anderson. Statpac 2 glaucoma change probability. Archive of Ophthalmol., 109:1690–1692, 1991.Google Scholar
  20. 20.
    K. Nouri-Mahdavi, L. Brigatti, M. Weitzman, and J. Caprioli. Comparison of methods to detect visual field progression in glaucoma. Ophthomology, 104(8):1228–1236, 1997.Google Scholar
  21. 21.
    J. Platt. Fast training of support vector machines using sequential minimal optimization. In Advances in Kernel Methods-Support Vector Learning. MIT Press, Cambridge, MA, 1998.Google Scholar
  22. 22.
    S.D. Smith, J. Katz, and H.A. Quigly. Analysis of progressive change in automated visual fields in glaucoma. Investigative Ophthomology and Vision Science, 37(7):1419–1428, 1996.Google Scholar
  23. 23.
    P.G.D. Spry, A.B. Bates, C.A. Johnson, and B.C. Chauhan. Simulation of longitudinal threshold visual field data. Investigative Ophthomology and Vision Science, 41(8):2192–2200, 2000.Google Scholar
  24. 24.
    J. Weber and H. Ulrich. A perimetric nerve fiber bundle map. International Ophthalmology, 15:193–200, 1991.CrossRefGoogle Scholar
  25. 25.
    C.J. Wild and G.A.F. Weber. Introduction to probability and statistics. Department of Statistics, University of Auckland, New Zealand, 1995.Google Scholar
  26. 26.
    J.M. Wild, M.K. Hussey, J.G. Flanagan, and G.E. Trope. Pointwise topographical and longitudinal modeling of the visual field in glaucoma. Investigative Ophthomology and Vision Science, 34(6):1907–1916, 1993.Google Scholar
  27. 27.
    J.M. Wild, N. Hutchings, M.K. Hussey, J.G. Flanagan, and G.E. Trope. Pointwise univariate linear regression of perimetric sensitivity against follow-up time in glaucoma. Ophthomology, 104(5):808–815, 1997.Google Scholar
  28. 28.
    Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Francisco, CA, 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Andrew Turpin
    • 1
  • Eibe Frank
    • 2
  • Mark Hall
    • 2
  • Ian H. Witten
    • 2
  • Chris A. Johnson
    • 1
  1. 1.Discoveries in Sight, Devers Eye InstitutePortlandUSA
  2. 2.Department of Computer ScienceUniversity of WaikatoHamiltonNew Zealand

Personalised recommendations