A Game-Theoretic Approach to the Simple Coevolutionary Algorithm

  • Sevan G. Ficici
  • Jordan B. Pollack
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1917)


The fundamental distinction between ordinary evolutionary algorithms (EA) and co-evolutionary algorithms lies in the interaction between coevolving entities. We believe that this property is essentially game-theoretic in nature. Using game theory, we describe extensions that allow familiar mixing-matrix and Markov-chain models of EAs to address coevolutionary algorithm dynamics. We then employ concepts from evolutionary game theory to examine design aspects of conventional coevolutionary algorithms that are poorly understood.


Nash Equilibrium Pure Strategy Artificial Life Replicator Dynamic Evolutionary Stable Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. J. Angeline and J. B. Pollack. Competitive environments evolve better solutions for complex tasks. In S. Forrest, editor, Proceedings of the Fifth International Conference on Genetic Algorithms, pages 264–270. Morgan Kaufmann, 1994.Google Scholar
  2. 2.
    K. Binmore. Fun and Games: A Text on Game Theory. D.C. Heath, 1992.Google Scholar
  3. 3.
    D. Cliff and G. F. Miller. Tracking the red queen: Measurements of adaptive progress in co-evolutionary simulations. In F. Moran et al., editors, Third European Conference on Artificial Life, pages 200–218. Springer Verlag, 1995.Google Scholar
  4. 4.
    H. Dawid. A markov chain analysis of genetic algorithms with a state dependant fitness function. Complex Systems, 8:407–417, 1994.zbMATHGoogle Scholar
  5. 5.
    U. Dieckmann and R. Law. The dynamical theory of coevolution: A derivation from stochastic ecological processes. Journal of Mathematical Biology, 34:579–612, 1996.zbMATHGoogle Scholar
  6. 6.
    S. G. Ficici, O. Melnik, and J. B. Pollack. A game-theoretic investigation of selection methods used in evolutionary algorithms. In A. Zalzala et al., editors, Proceedings of the 2000 Congress on Evolutionary Computation. IEEE Press, 2000.Google Scholar
  7. 7.
    S. G. Ficici and J. B. Pollack. Challenges in coevolutionary learning: Arms-race dynamics, open-endedness, and mediocre stable states. In C. Adami et al., editors, Artificial Life VI (1998), pages 238–247. MIT Press, 1998.Google Scholar
  8. 8.
    S. G. Ficici and J. B. Pollack. Effects of finite populations on evolutionary stable strategies. In L. D. Whitley, editor, Proceedings of the 2000 Genetic and Evolutionary Computation Conference. Morgan-Kaufmann, 2000.Google Scholar
  9. 9.
    D. B. Fogel, G. B. Fogel, and P. C. Andrews. On the instability of evolutionary stable strategies. BioSystems, 44:135–152, 1997.CrossRefGoogle Scholar
  10. 10.
    P. Hammerstein. Darwinian adaptation, population genetics and the streetcar theory of evolution. Journal of Mathematical Biology, 34:511–532, 1996.zbMATHGoogle Scholar
  11. 11.
    D. Hillis. Co-evolving parasites improves simulated evolution as an optimization procedure. In C. Langton et al., editors, Artificial Life II. Addison-Wesley, 1991.Google Scholar
  12. 12.
    J. Hofbauer and K. Sigmund. Evolutionary Games and Population Dynamics. Cambridge University Press, 1998.Google Scholar
  13. 13.
    H. Juillé and J. B. Pollack. Coevolving the “ideal” trainer: Application to the discovery of cellular automata rules. In J. R. Koza et al., editors, Proceedings of the Third Annual Genetic Programming Conference, pages 519–527. Morgan Kaufmann, 1998.Google Scholar
  14. 14.
    K. Lindgren. Evolutionary phenomena in simple dynamics. In C. Langton et al., editors, Artificial Life II, pages 295–312. Addison-Wesley, 1991.Google Scholar
  15. 15.
    J. Maynard-Smith. Evolution and the Theory of Games. Cambridge University Press, 1982.Google Scholar
  16. 16.
    N. Meuleau and C. Lattaud. The artificial evolution of cooperation. In J.-M. Alliot, E. Lutton, E. Ronald, M. Schoenauer, and S. D., editors, Artificial Evolution (AE 95), pages 159–180. Springer-Verlag, 1995.Google Scholar
  17. 17.
    M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1996.Google Scholar
  18. 18.
    J. B. Pollack and A. D. Blair. Co-evolution in the successful learning of backgammon strategy. Machine Learning, 32(3):225–240, 1998.zbMATHCrossRefGoogle Scholar
  19. 19.
    T. Riechmann. Learning and behavioral stability: An economic interpretation of genetic algorithms. Journal of Evolutionary Economics, 9:225–242, 1999.CrossRefGoogle Scholar
  20. 20.
    C. D. Rosin. Coevolutionary Search Among Adversaries. PhD thesis, University of California, San Diego, 1997.Google Scholar
  21. 21.
    J. Shapiro, A. Prügel-Bennet, and M. Rattray. A statistical mechanical formulation of the dynamics of genetic algorithms. In T. C. Fogarty, editor, Evolutionary Computing (AISB Workshop), pages 17–27. Springer-Verlag, 1994.Google Scholar
  22. 22.
    K. Sims. Evolving 3d morphology and behavior by competition. In Artificial Life IV, pages 28–39. MIT Press, 1994.Google Scholar
  23. 23.
    S. H. Strogatz. Nonlinear Dynamics and Chaos. Addison Wesley, 1994.Google Scholar
  24. 24.
    M. D. Vose. The Simple Genetic Algorithm. MIT Press, 1999.Google Scholar
  25. 25.
    J. Weibull. Evolutionary Game Theory. MIT Press, 1995.Google Scholar
  26. 26.
    L. D. Whitley. A review of models for simple genetic algorithms and cellular genetic algorithms. In V. Rayward-Smith, editor, Applications of Modern Heuristic Methods, pages 55–67. Alfred Waller, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Sevan G. Ficici
    • 1
  • Jordan B. Pollack
    • 1
  1. 1.DEMO Lab—Department of Computer ScienceBrandeis UniversityWalthamUSA

Personalised recommendations