New Key Agreement Protocols in Braid Group Cryptography

  • Iris Anshel
  • Michael Anshel
  • Benji Fisher
  • Dorian Goldfeld
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2020)

Abstract

Key agreement protocols are presented whose security is based on the difficulty of inverting one-way functions derived from hard problems for braid groups. Efficient/low cost algorithms for key transfer /extraction are presented. Attacks/security parameters are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anshel, I., Anshel, M.: From the Post-Markov Theorem through Decision Problems to Public-Key Cryptography, American Mathematical Monthly Vol. 100, No. 9 (November 1993) 835–845MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Anshel, I., Anshel, M., and Goldfeld D.: An Algebraic Method for Public-Key Cryptography, Mathematical Research Letters 6 (1999) 1–5Google Scholar
  3. 3.
    Birman, J.: Braids, Links and Mapping Class Groups, Annals of Mathematical Studies, Study 82 Princeton University Press (1974)Google Scholar
  4. 4.
    Birman, J., Ko, K. H., Lee, S. J.: A new solution to the word and conjugacy problems in the braid groups, Advances in Mathematics 139 (1998), 322–353MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Boneh, D.: Twenty Years of Attacks on the RSA Cryptosystem, Notices of the American Mathematical Society, Vol 46, No. 2 (1999) 203–213.MATHMathSciNetGoogle Scholar
  6. 6.
    Dehornoy, P.: A fast method for comparing braids, Advances in Mathematics 123 (1997), 205–235MathSciNetGoogle Scholar
  7. 7.
    Garzon, M., Zalcstein, Y.: The complexity of Grigorchuk groups with applications to cryptography, Theoretical Computer Science 88:1 (1991) 83–98 (additional discussion may be found in M. Garzon, “Models of Massive Parallelism” Springer-Verlag (1995))CrossRefMathSciNetGoogle Scholar
  8. 8.
    Hansen, V. L.: Braids and Coverings: Selected topics, LMS, Student Texts 18 Cambridge University Press (1989)Google Scholar
  9. 9.
    Johnson, D. L.: Presentations of Groups: Second Edition, Cambridge University Press (1997)Google Scholar
  10. 10.
    Kawauchi, A.: A Survey of Knot Theory, Birhauser Verlag (1996)Google Scholar
  11. 11.
    Ko, K. H., Lee, S. J., Cheon, J. H., Han, J. W., Kang, J. S., Park, C.: New Public-Key Cryptosystem Using Braid Groups, to appear in Crypto 2000Google Scholar
  12. 12.
    Koblitz, N.: Algebraic Aspects of Cryptography, Springer-Verlag (1998)Google Scholar
  13. 13.
    Morton, H. R.: The Multivariable Alexander Polynomial for a Closed Braid, Contemporary Mathematics 233 AMS (1999), 167–172Google Scholar
  14. 14.
    Sidel’nikov, V. M., Cherepenev, M. A., Yashichenko, V. V.: Systems of open distribution of keys on the basis of noncommutative semigroups, Russian. Acad. Sci. Dokl. Math. Vol. 48 No.2 (1994) 384–386Google Scholar
  15. 15.
    Wagner, N. R., Magyarik, M. R.: A public key cryptosystem based on the word problem, Advances in Cryptology: Proceedings of Crypto 84, ed. G. R. Blakely and D. Chaum, LNCS 196, Springer Verlag (1985) 19–36Google Scholar
  16. 16.
    Welsch, D. J. A.: Complexity: Knots, Colourings and Counting, LMS, Lecture Notes Series 186 Cambridge University Press (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Iris Anshel
    • 1
  • Michael Anshel
    • 2
  • Benji Fisher
    • 3
  • Dorian Goldfeld
    • 4
  1. 1.Arithmetica Inc.TenaflyNJUSA
  2. 2.City College of New YorkUSA
  3. 3.Boston College,Chestnut HillUSA
  4. 4.Columbia UniversityUSA

Personalised recommendations