Software Implementation of the NIST Elliptic Curves Over Prime Fields

  • Michael Brown
  • Darrel Hankerson
  • Julio López
  • Alfred Menezes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2020)


This paper presents an extensive study of the software implementation on workstations of the NIST-recommended elliptic curves over prime fields. We present the results of our implementation in C and assembler on a Pentium II 400MHz workstation. We also provide a comparison with the NIST-recommended curves over binary fields.


Elliptic Curve Smart Card Elliptic Curf Software Implementation Elliptic Curve Cryptography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    ANSI X9.62, Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA), 1999.Google Scholar
  2. 2.
    A. Bosselaers, R. Govaerts and J. Vandewalle, “Comparison of three modular reduction functions”, Crypto’ 930, LNCS 773, 1994, 175–186.Google Scholar
  3. 3.
    E. Brickell, D. Gordon, K. McCurley and D. Wilson, “Fast exponentiation with preecomputation”, Eurocrypt’ 92, LNCS 658, 1993,200–207.Google Scholar
  4. 4.
    D. Chudnovsky and G. Chudnovsky, “Sequences of numbers generated by addition in formal groups and new primality and factoring tests”, Advances in Applied Mathematics, 7 (1987), 385–434.CrossRefMathSciNetGoogle Scholar
  5. 5.
    H. Cohen, A. Miyaji and T. Ono, “Efficient elliptic curve exponentiation using mixed coordinates”, Asiacrypt’ 98, LNCS 1514, 1998, 51–65.Google Scholar
  6. 6.
    E. De Win, S. Mister, B. Preneel and M. Wiener, “On the performance of signature schemes based on elliptic curves”, Proc. ANTS-III, LNCS 1423, 1998, 252–266.Google Scholar
  7. 7.
    J. Guajardo and C. Paar, “Modified squaring algorithm”, preprint, 1999.Google Scholar
  8. 8.
    D. Hankerson, J. Hernandez and A. Menezes, “Software implementation of elliptic curve cryptography over binary elds”, Proc. CHES 2000, to appear.Google Scholar
  9. 9.
    T. Hasegawa, J. Nakajima and M. Matsui, “A practical implementation of elliptic curve cryptosystems over GF(p) on a 16-bit microcomputer”, Proc. PKC’ 98, LNCS 1431, 1998, 182–194.Google Scholar
  10. 10.
    IEEE 1363-2000, Standard Specifications for Public-Key Cryptography, 2000.Google Scholar
  11. 11.
    ISO/IEC 15946, Information Technology— Security Techniques— Cryptographic Techniques Based on Elliptic Curves, Committee Draft (CD), 1999.Google Scholar
  12. 12.
    K. Itoh et al. “Fast implementation of public-key cryptography on a DSP TMS320C6201”, Proc. CHES’ 99, LNCS 1717, 1999, 61–72.Google Scholar
  13. 13.
    D. Knuth, The Art of Computer Programming‐Seminumerical Algorithms, Addison-Wesley, 3rd edition, 1998.Google Scholar
  14. 14.
    N. Koblitz, “Elliptic curve cryptosystems”, Math. Comp., 48 (1987), 203–209.Google Scholar
  15. 15.
    C. Lim and P. Lee, “More flexible exponentiation with precomputation”, Crypto’ 94, LNCS 839, 1994, 95–107.Google Scholar
  16. 16.
    A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptography, CRC Press, 1997.Google Scholar
  17. 17.
    V. Miller, “Uses of elliptic curves in cryptography”, Crypto’ 85, LNCS 218, 1986, 417–426.Google Scholar
  18. 18.
    A. Miyaji, T. Ono and H. Cohen, “Efficient elliptic curve exponentiation”, Proceedings of ICICS’ 97, LNCS 1334, 1997, 282–290.Google Scholar
  19. 19.
    F. Morain and J. Olivos, “Speeding up the computations on an elliptic curve using addition-subtraction chains”, Inform. Th. Appl. 24 (1990), 531–544.zbMATHMathSciNetGoogle Scholar
  20. 20.
    NIST, Digital Signature Standard, FIPS Publication 186-2, February 2000.Google Scholar
  21. 21.
    NIST, Advanced Encryption Standard, work in progress.Google Scholar
  22. 22.
    J. Solinas, “Generalized Mersenne numbers”, Technical Report CORR 99-39, Dept. of C&O, University of Waterloo, 1999.Google Scholar
  23. 23.
    J. Solinas, “Efficient arithmetic on Koblitz curves”, Designs, Codes and Cryptography, 19 (2000), 195–249.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Michael Brown
    • 1
  • Darrel Hankerson
    • 2
    • 4
  • Julio López
    • 3
  • Alfred Menezes
    • 1
    • 4
  1. 1.Dept. of C&OUniversity of WaterlooCanada
  2. 2.Dept. of Discrete and Statistical SciencesAuburn UniversityUSA
  3. 3.Dept. of Computer ScienceUniversity of ValleColombia
  4. 4.Certicom ResearchCanada

Personalised recommendations