Advertisement

Reach Set Computations Using Real Quantifier Elimination

  • Hirokazu Anai
  • Volker Weispfenning
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2034)

Abstract

Reach set computations are of fundamental importance in control theory. We consider the reach set problem for open-loop systems described by parametric inhomogeneous linear differential systems and use real quantifier elimination methods to get exact and approximate solutions. The method employs a reduction of the forward and backward reach set and control parameter set problems to the transcendental implicitization problems for the components of special solutions of simpler non-parametric systems. For simple elementary functions we give an exact calculation of the cases where exact semialgebraic transcendental implicitization is possible. For the negative cases we provide approximate alternating using discrete point checking or safe estimations of reach sets and control parameter sets. Examples are computed using the redlog and qepcad packages.

Keywords

Hybrid System Erential Equation Inhomogeneous System Cylindrical Algebraic Decomposition Parametric Linear System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. L. Alling. Real elliptic curves. North-Holland, 1981.Google Scholar
  2. 2.
    R. Alur, C. Coucoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicolin, A. Olivere, J. Safakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer Science, 138:3–34, 1995.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    H. Anai. Algebraic approach to analysis of discrete-time polynomial systems. In Proc. of European Control Conference 1999, 1999.Google Scholar
  4. 4.
    H. Anai and S. Hara. Fixed-structure robust controller synthesis based on sign definite condition by a special quantifier elimination. In Proceedings of American Control Conference 2000, pages 1312–1316, 2000.Google Scholar
  5. 5.
    H. Anai and V. Weispfenning. Reach set computation using real quantifier elimination. Technical Report MIP-0012, FMI, Universität Passau, D-94030 Passau, Germany, Oct. 2000.Google Scholar
  6. 6.
    B. Anderson, N. Bose, and E. Jury. Output feedback stabilization and related problems — solution via decision methods. IEEE Trans. Auto. Control, 20(1):53–65, 1975.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    S. Basu, R. Pollack, and M.-F. Roy. On the combinatorial and algebraic complexity of quantifier elimination. J. ACM, 43(6):1002–1045, 1996.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    T. Becker, V. Weispfenning, and H. Kredel. Gröbner Bases, a Computational Approach to Commutative Algebra, volume 141 of Graduate Texts in Mathematics. Springer, New York, corrected second printing edition, 1998.Google Scholar
  9. 9.
    J. Bochnak, M. Coste, and M.-F. Roy. Géometrie algébrique réelle. Springer, Berlin, Heidelberg, New York, 1987.MATHGoogle Scholar
  10. 10.
    M. Braun. Differential Equations and Their Applications, volume 15 of Applied Mathematical Science. Springer, 3rd edition, 1983.Google Scholar
  11. 11.
    B. Caviness and J. Johnson, editors. Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic Computation. Springer, Berlin, Heidelberg, New York, 1998.Google Scholar
  12. 12.
    G. E. Collins and H. Hong. Partial cylindrical algebraic decomposition for quantifier elimination. Journal of Symbolic Computation, 12(3):299–328, Sept. 1991.MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    J. Craig. Introduction to Robotics. Addison-Wesley, 1986.Google Scholar
  14. 14.
    A. Dolzmann and T. Sturm. REDLOG: Computer algebra meets computer logic. ACM SIGSAM Bulletin, 31(2):2–9, June 1997.CrossRefMathSciNetGoogle Scholar
  15. 15.
    P. Dorato, W. Yang, and C. Abdallah. Application of quantifier elimination theory to robust multi-object feedback design. J. Symb. Comp. 11, pages 1–6, 1995.Google Scholar
  16. 16.
    L. v. d. Dries. Tame Topology and o-minimal structures. Cambridge University Press, 1998.Google Scholar
  17. 17.
    T. Henzinger, P. Kopke, A. Puri, and P. Varaiya. What’s decidable about hybrid automata? In Proceedings of the 27th Annual Symposium on Theory of Computing, STOC’95, pages 373–382. ACM Press, 1995.Google Scholar
  18. 18.
    T. Henzinger and S. Sastry, editors. Hybrid Systems: Computation and Control, volume 1386 of LNCS. Springer-Verlag, 1998.MATHGoogle Scholar
  19. 19.
    M. Jirstrand. Nonlinear control system design by quantifier elimination. Journal of Symbolic Computation, 24(2):137–152, Aug. 1997. Special issue on applicationsof quantifier elimination.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    P. Kovács. Computer algebra in robot-kinematics. In Proceeding of the workshop:“Computer Algebra in Science and Engineering”, Bielefeld, Aug’94, pages 303–316, Singapore, 1994. World Scientific.Google Scholar
  21. 21.
    A. Kurzhanski and I. Vĺyi. Ellipsoidal Calculus for Estimation and Control. Birkhäuser, 1997.Google Scholar
  22. 22.
    G. Lafferriere, G. Pappas, and S. Sastry. O-minimal hybrid systems. Mathematics of control, Signals and Systems, 13(1):1–21, 2000.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    G. Lafferriere, G. Pappas, and S. Yovine. A new class of decidable hybrid systems. In Hybrid Systems: Computation and Control, volume 1569 of LNCS, pages 137–151. Springer, 1999.CrossRefGoogle Scholar
  24. 24.
    G. Lafferriere, G. Pappas, and S. Yovine. Reachability computation for linear hybrid systems. In Proceedings of the 14th IFAC World Congress, volume E, pages 7–12, Beijin, P.R.China, 1999.Google Scholar
  25. 25.
    R. Loos and V. Weispfenning. Applying linear quantifier elimination. The Computer Journal, 36(5):450–462, 1993. Special issue on computational quantifier elimination.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    N. A. Lynch and B. H. Krogh, editors. Proceedings Third International Workshop on Hybrid Systems: Computation and Control (HSCC 2000), Pittsburgh, PA, USA, volume 1790 of Lecture Notes in Computer Science. Springer-Verlag, Mar. 2000.Google Scholar
  27. 27.
    D. Manocha and J. Canny. Algorithm for implicitizing rational parametric surfaces. In R. Barnhill and W. Boehm, editors, Computer Aided Geometric Design, volume 9. North-Holland, 1992.Google Scholar
  28. 28.
    D. Nešić. Two algorithms arising in analysis of polynomial models. In Proceedings of 1998 American Control Conference, pages 1889–1893, 1998.Google Scholar
  29. 29.
    G. Pappas and S. Yovine. Decidable hybrid systems. Technical report, University of California at Berkeley, 1998.Google Scholar
  30. 30.
    F. Vaandrager and J. von Schuppen, editors. Hybrid Systems: Computation and Control, volume 1569 of LNCS. Springer-Verlag, 1999.MATHGoogle Scholar
  31. 31.
    V. Weispfenning. Quanti_er elimination for real algebra—the quadratic case and beyond. Applicable Algebra in Engineering Communication and Computing, 8(2):85–101, Feb. 1997.MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    V. Weispfenning. Semilinear motion planning in REDLOG. Technical report, Universität Passau, D-94030 Passau, May 1999. available at the electronic proceedings of IMACS-ACA’99, http://math.unm.edu/aca.html.

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Hirokazu Anai
    • 1
  • Volker Weispfenning
    • 2
  1. 1.Computer System LaboratoriesFujitsu Laboratories LtdNakahara-ku KawasakiJapan
  2. 2.Fakultät für Mathematik und InformatikUniversität PassauPassauGermany

Personalised recommendations