Advertisement

Efficient Querying of Periodic Spatiotemporal Objects

  • Peter Revesz
  • Mengchu Cai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1894)

Abstract

In this paper we propose a new data model called periodic spatiotemporal objects (PSOs) databases. We show that relational algebra can be extended to PSO databases and any fixed relational algebra queries can be evaluated in PTIME in the size of any input database. We also describe a database system implementation of the PSO model and several sample queries.

Keywords

Query Language Relational Algebra Geographic Information System Spatiotemporal Database Input Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Baudinet, M. Niézette, and P. Wolper. On the Representation of Infinite Temporal Data and Queries. Proc. 10th ACM Symposium on Principles of Database Systems, pp. 280–290, 1991.Google Scholar
  2. 2.
    N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An Efficient and Robust Access Method for Points and Rectangles. Proc. ACM SIGMOD International Conference on Management of Data, pp. 322–331, 1990.Google Scholar
  3. 3.
    M. Benedikt, G. Dong, L. Libkin, and L. Wong. Relational Expressive Power of Constraint Query Languages. Journal of the ACM, 45:1, pp. 1–34, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. An Access Control Model Supporting Periodicity Constraints and Temporal Reasoning. ACM Transactions on Database Systems, 23:3, pp. 231–285, 1998.CrossRefGoogle Scholar
  5. 5.
    E. Bertino, B. Catania, and B. Shidlovsky. Towards Optimal Two-dimensional Indexing for Constraint Databases. Information Processing Letters, 64 (1997), pp. 1–8.CrossRefMathSciNetGoogle Scholar
  6. 6.
    C. Bonhomme, C. Trépied, M-A. Aufaure, and R. Laurini. A Visual Language for Querying Spatio-Temporal Databases. Proc. 7th ACM Symposium on Geographic Information Systems, 34–39, Kansas City, MO, November 1999.Google Scholar
  7. 7.
    A. Brodsky, J. Jaffar, and M. Maher. Towards Practical Query Evaluation for Constraint Databases. Constraints, 2:3–4, pp. 279–304, 1997.zbMATHCrossRefGoogle Scholar
  8. 8.
    M. Cai, D. Keshwani, and P.Z Revesz. Parametric Rectangle: A Model for Querying and Animating Spatiotemporal Databases. In Proc. of the 7th Conference on Extending Database Technology, Springer LNCS-1777, pp. 430–444, Konstanz, Germany, March 2000.Google Scholar
  9. 9.
    M. Casco Associates. Linear Momentum and Collisions: A Mechanics Course, available at http://www.mcasco.com/p1lmc.html.
  10. 10.
    J. Chomicki and T. Imieliński. Temporal Deductive Databases and Infinite Objects. In Proc. of 7th ACM Symposium on Principles of Database Systems, pp. 61–73, 1988.Google Scholar
  11. 11.
    J. Chomicki and T. Imieliński. Finite Representation of Infinite Query Answers. In ACM Transactions on Database Systems, (18)2, pages 181–223, 1993.CrossRefGoogle Scholar
  12. 12.
    J. Chomicki and P. Z. Revesz. Constraint-based Interoperability of Spatiotemporal Databases, Geoinformatica, 3:3, 1999. (Preliminary version In: Proc. International Symposium on Large Spatial Databases, Springer-Verlag LNCS 1262, pp. 142–161, Berlin, Germany, July 1997).Google Scholar
  13. 13.
    J. Chomicki and P. Z. Revesz. A Geometric Framework for Specifying Spatiotemporal Objects. In: Proc. International Workshop on Time Representation and Reasoning, pp. 41–46, Orlando, Florida, May 1999.Google Scholar
  14. 14.
    M. Erwig, R. H. Güting, M. M. Schneider and M. Vazirgiannis. Spatio-Temporal Data Types: An Approach to Modeling and Querying Moving Objects in Databases. In: Proc. ACM Symposium on Geographic Information Systems, November 1998.Google Scholar
  15. 15.
    A. U. Frank and M. Wallace Constraint Based Modeling in A GIS: Road Design as A Case Study. In: Proceedings of Auto-Carto 12, Charlotte, North Carolina, Vol. 4, pages 177–186, 1995.Google Scholar
  16. 16.
    R. Gonzalez, and R. Woods. Digital Image Processing, Addison-Wesley, 1998.Google Scholar
  17. 17.
    S. Grumbach, P. Rigaux, and L. Segoufin. Spatio-Temporal Data Handling with Constraints. In: Proc. 6th ACM Symposium on Geographic Information Systems, November 1998.Google Scholar
  18. 18.
    A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. Proc. ACM SIGMOD International Conference on Management of Data, pp. 47–57, 1984.Google Scholar
  19. 19.
    F. Kabanza, J-M. Stevenne, and P. Wolper. Handling Infinite Temporal Data. Journal of Computer and System Sciences, (51)1, pages 26–52, 1995.CrossRefMathSciNetGoogle Scholar
  20. 20.
    P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint Query Languages. Journal of Computer and System Sciences, 51:1, pp. 26–52, 1995.CrossRefMathSciNetGoogle Scholar
  21. 21.
    G. Kollios, D. Gunopulos, and V. J. Tsotras. On Indexing Mobile Objects. Proc. 18th ACM Symposium on Principles of Database Systems, pp. 261–272, 1999.Google Scholar
  22. 22.
    G. Kollios, D. Gunopulos, and V. J. Tsotras. Nearest Neighbor Queries in a Mobile Environment. In: Proc. Workshop on Spatio-Temporal Database Management, Springer-Verlag LNCS 1678, pp. 119–134, Edinburgh, Scotland, September 1999.CrossRefGoogle Scholar
  23. 23.
    M. Koubarakis and S. Skiadopoulos. Tractable Query Answering in Indefinite Constraint Databases: Basic Results and Applications of Querying Spatio-Temporal Information. In: Proc. Workshop on Spatio-Temporal Database Management, Springer-Verlag LNCS 1678, pp. 204–223, Edinburgh, Scotland, September 1999.CrossRefGoogle Scholar
  24. 24.
    R. Laurini and D. Thompson. Fundamentals of Spatial Information Systems. Academic Press, 1992.Google Scholar
  25. 25.
    P. Z. Revesz. Introduction to Constraint Databases, Springer-Verlag, 2000.Google Scholar
  26. 26.
    S. Saltenis, C. S. Jensen, S. T. Leutenegger and M. A. Lopez. Indexing the Positions of Continuously Moving Objects. In: Proc. ACM SIGMOD International Conference on Management of Data, pp. 331–342, 2000.Google Scholar
  27. 27.
    A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and Querying Moving Objects. In Proceedings of the 13th IEEE International Conference on Data Engineering, pages 422–432, 1997.Google Scholar
  28. 28.
    J. Tayeb, O. Ulusoy, O. Wolfson. A Quadtree-Based Dynamic Attribute Indexing Method. The Computer Journal, 41(3):185–200, 1998.zbMATHCrossRefGoogle Scholar
  29. 29.
    A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. T. Snodgrass. Temporal Databases: Theory, Design, and Implementation. Benjamin/Cummings Inc., Redwood City, California, 1993.Google Scholar
  30. 30.
    D. Toman and J. Chomicki. Datalog with Integer Periodicity Constraints. Journal of Logic Programming, 35(3), June 1998, pp. 263–290.Google Scholar
  31. 31.
    D. Vasilis and M. Christos and S. Spiros. A Provably Efficient Computational Model For Approximate Spatiotemporal Retrieval. In: Proc. 7th ACM Symposium on Geographic Information Systems, pp. 40–46, Kansas City, Missouri, November 1999.Google Scholar
  32. 32.
    M. F. Worboys. A Unified Model for Spatial and Temporal Information. Computer Journal, 37:1, pp. 25–34, 1994.CrossRefGoogle Scholar
  33. 33.
    M. F. Worboys. GIS: A Computing Perspective, Taylor & Francis, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Peter Revesz
    • 1
  • Mengchu Cai
    • 1
  1. 1.University of Nebraska-LincolnLincolnUSA

Personalised recommendations