Consistency in Augmented Reality Systems

  • Emmanuel Dubois
  • Laurence Nigay
  • Jocelyne Troccaz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2254)


Systems combining the real and the virtual are becoming more and more prevalent. The Augmented Reality (AR) paradigm illustrates this trend. In comparison with traditional interactive systems, such AR systems involve real entities and virtual ones. And the duality of the two types of entities involved in the interaction has to be studied during the design. We therefore present the ASUR notation: The ASUR description of a system adopts a task-centered point of view and highlights the links between the real world and the virtual world. Based on the characteristics of the ASUR components and relations, predictive usability analysis can be performed by considering the ergonomic property of consistency. We illustrate this analysis on the redesign of a computer assisted surgical application, CASPER.


Augmented Reality Real Object Real Entity Augmented Reality System Guidance Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abowd, D., Coutaz, J., Nigay, L., Structuring the Space of Interactive Properties, in Proceedings of Working Conference IFIP TC2/WG2.7 on Engineering for Human-Computer Interaction, (1992), p. 113–128.Google Scholar
  2. 2.
    Azuma, R., T., A survey of Augmented Reality, in Presence: Teleoperators and Virtual Environments 6, 4, (1997), p. 355–385.Google Scholar
  3. 3.
    Bainville, E., Chaffanjon, P., Cinquin, P., Computer generated visual assistance to a surgical operation: the retroperitoneoscopy, in Computers in Biology and Medicine, 25(2), (1995), p. 165–171.CrossRefGoogle Scholar
  4. 4.
    Bernsen, N., O., Taxonomy of HCI Systems: State of the Art, ESPRIT BR GRACE, Deliverable 2.1, (1993).Google Scholar
  5. 5.
    Chavanon, O., et al., Computer ASsisted PERicardial punctures: animal feasability study, in Conference Proceedings of CVRMed/MRCAS’97, Grenoble, (1997), p. 285–291.Google Scholar
  6. 6.
    Cinquin, P., Bainville, E., Barbe, C., Bittar, E., Bouchard, V., Bricault, I., Champleboux, G., Chenin, M., Chevalier, L., Delnondedieu, Y., Desbat, L., Dessene, V., Hamadeh, A., Henry, D., Laieb, N., Lavallée, S., Lefebvre, J.M., Leitner, F., Menguy, Y., Padieu, F., Péria, O., Poyet, A., Promayon, M., Rouault, S., Sautot, P., Troccaz, J., Vassal, P., Computer Assisted Medical Interventions, in IEEE Engineering in Medicine and Biology 4, (1995), p. 254–263.CrossRefGoogle Scholar
  7. 7.
    Crowley, J., Coutaz, J., Bérard, F., Things That See, in Communication of the ACM (CACM) Vol. 43 (3), (2000), p. 54–64.CrossRefGoogle Scholar
  8. 8.
    Dix, A., Finlay, A., Abowd, G., Beale, R., Human-Computer Interaction, 2nd Edition, Prentice Hall, (1998).Google Scholar
  9. 9.
    Dubois, E., Nigay, L., Troccaz, J., Chavanon, O., Carrat, L., Classification Space for Augmented Surgery, an Augmented Reality Case Study, in Conference Proceedings of Interact’99, (1999), p. 353–359.Google Scholar
  10. 10.
    Dubois, E., Nigay, L., Troccaz, J., Un Regard Unificateur sur la Réalité Augmentée: Classification et Principes de Conception, in Revue d’Interaction Homme-Machine, Journal of Human-Machine Interaction, Europia Productions, (2001), 23 pages. To appear.Google Scholar
  11. 11.
    Feiner, S., MacIntyre, B., Seligmann, D., Knowledge-Based Augmented Reality, in Communication of the ACM n•7, (1993), p. 53–61.Google Scholar
  12. 12.
    Graham, T. C. N., Watts, L., Calvary, G., Coutaz, J., Dubois, E., Nigay, L., A Dimension Space for the Design of Interactive Systems within their Physical Environments, in Conference Proceedings of DIS’2000, (2000), p. 406–416.Google Scholar
  13. 13.
    Gram, C., Cockton, G., et al., Design Principles for Interactive Software, Chapman et Hall, (1996), 248 pages.Google Scholar
  14. 14.
    shii, H., Ullmer, B., Tangible Bits: Towards Seamless Interfaces between People, Bits and Atoms, in Conference Proceedings of CHI’97, (1997), p. 234–241.Google Scholar
  15. 15.
    Médini, L. and Mackay, W.E., An augmented stripboard for air traffic control, Technical Report of Centre d’Études de la Navigation Aérienne, France, (1998).Google Scholar
  16. 16.
    Norman, D., A., Cognitive Engineering, User Centered Design, New Perspectives on Computer Interaction, Lawrence Erlbaum Associates, (1986), p. 31–61.Google Scholar
  17. 17.
    Notte, D., Nyssen, A., S., De Keyser, V., Evaluations des techniques de chirurgie minimale invasive par robot: premières constatations, in Conference Proceedings of ErgoIHM’2000, (2000), p. 234–243.Google Scholar
  18. 18.
    Taylor, R., Paul, H., Cutting, C., Mittlestadt, B., Hanson, W., Kazanzides, P., Musits, B., Kim, Y., Kalvin, A., Haddad, B., Khoramabadi, D., Larose, D., Augmentation of human precision in computer-integrated surgery, in Innovation and Technology in Biology and Medicine, Special Issue on Robotic Surgery, 13 (4), (1992), p. 450–468.Google Scholar
  19. 19.
    Troccaz, J., Peshkin, M., Davies, B., The use of localizers, robots and synergistic devices in CAS, in Conference Proceedings of MRCAS’97, (1997), p. 727–736.Google Scholar
  20. 20.
    Webster, A., Feiner, S., MacIntyre B., Massie, W., Krueger, T., Augmented Reality in Architectural Construction, Inspection, and Renovation, in Proceedings of Computing in Civil Engineering, ASCE, (1996), p. 913–919.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Emmanuel Dubois
    • 1
    • 2
  • Laurence Nigay
    • 1
  • Jocelyne Troccaz
    • 2
  1. 1.CLIPS-IMAG, IIHMGrenoble Cedex 9France
  2. 2.Faculty of Medicine (IAB)TIMC-IMAG, GMCAOLa Tronche CedexFrance

Personalised recommendations