Multilevel Monte Carlo Methods

  • Stefan Heinrich
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2179)


We study Monte Carlo approximations to high dimensional parameter dependent integrals. We survey the multilevel variance reduction technique introduced bythe author in [4] and present extensions and new developments of it. The tools needed for the convergence analysis of vector-valued Monte Carlo methods are discussed, as well. Applications to stochastic solution of integral equations are given for the case where an approximation of the full solution function or a family of functionals of the solution depending on a parameter of a certain dimension is sought.


Banach Space Integral Equation Monte Carlo Method Multilevel Approach Multilevel Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. G. Ciarlet. The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.zbMATHCrossRefGoogle Scholar
  2. 2.
    A. S. Frolov and N. N. Chentsov. On the calculation of certain integrals dependent on a parameter bythe Monte Carlo method, Zh. Vychisl. Mat. Mat. Fiz., 2, 714–717, 1962, (in Russian).Google Scholar
  3. 3.
    S. Heinrich. Random approximation in numerical analysis, in K. D. Bierstedt, A. Pietsch, W. M. Ruess and D. Vogt, (eds.), Functional Analysis, Marcel Dekker, New York, Basel, Hong Kong, 123–171, 1993.Google Scholar
  4. 4.
    S. Heinrich. Monte Carlo complexityof global solution of integral equations, J. Complexity, 14, 151–175, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    S. Heinrich. Wavelet Monte Carlo methods for the global solution of integral equations, in H. Niederreiter and J. Spanier, (eds.), Proceedings of the Third International Conference on Monte Carlo and Quasi-Monte Carlo Methods, Claremont 1998, Springer Verlag, Berlin, 227–237, 1999.Google Scholar
  6. 6.
    S. Heinrich. The multilevel method of dependent tests, in N. Balakrishnan, V. B. Melas, S. M. Ermakov, (eds.), Advances in Stochastic Simulation Methods, Birkhäuser, Boston, Basel, Berlin, 47–62, 2000.Google Scholar
  7. 7.
    S. Heinrich and E. Sindambiwe. Monte Carlo complexityof parametric integration, J. Complexity, 15, 317–341, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    A. Keller. Hierarchical Monte Carlo image synthesis, Mathematics and Computers in Simulation, 55(1–3), 79–92, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    M. Ledoux and M. Talagrand. Probability in Banach Spaces, Springer, Berlin, Heidelberg, New York, 1991.zbMATHGoogle Scholar
  10. 10.
    G. A. Mikhailov. Minimization of Computational Costs of Non-Analogue Monte Carlo Methods, World Scientific, Singapore, 1991.Google Scholar
  11. 11.
    E. Novak. Deterministic and Stochastic Error Bounds in Numerical Analysis, Lecture Notes in Mathematics, 1349, Springer, Berlin, Heidelberg, New York 1988.zbMATHGoogle Scholar
  12. 12.
    S. M. Prigarin. Convergence and optimization of functional estimates in statistical modelling in Sobolev’s Hilbert spaces, Russian J. Numer. Anal. Math. Modelling, 10, 325–346, 1995.zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    E. Sindambiwe. Optimal Algorithms for Parametric Integration, Shaker Verlag, Aachen, 1999.Google Scholar
  14. 14.
    I. M. Sobol. The use of w 2-distribution for error estimation in the calculation of integrals bythe Monte Carlo method, U.S.S.R. Comput. Math. and Math. Phys., 2, 717–723, 1962 (in Russian).MathSciNetGoogle Scholar
  15. 15.
    I. M. Sobol. Computational Monte Carlo Methods, Nauka, Moscow, 1973 (in Russian).Google Scholar
  16. 16.
    J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski. Information-Based Complexity, Academic Press, New York, 1988.zbMATHGoogle Scholar
  17. 17.
    A. V. Voytishek. Discrete-stochastic procedures for the global estimation of an integral which depends on a parameter, Comp. Math. Math. Phys., 36, 997–1009, 1996.Google Scholar
  18. 18.
    A. V. Voytishek. Using the Strang-Fix approximation in discrete-stochastic numerical procedures, Monte Carlo Methods and Appl., 3, 89–112, 1997.zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    A. V. Voytishek and T. E. Mezentseva. Practical use of multilevel algorithms, Proceedings of the 4-th St. Petersburg Workshop on Simulation, St. Petersburg, 2001, (to appear).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Stefan Heinrich
    • 1
  1. 1.Fachbereich InformatikUniversität KaiserslauternGermany

Personalised recommendations