Simulated Moving Bed Chromatography (SMB) for Application in Bioseparation

  • Sabine Imamoglu
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 76)

Abstract

Simulated Moving Bed (SMB) technology is of rising interest in the field of bioseparation. This is particularly due to its advantages such as reduction of solvent consumption, high productivity and final purities as well as low investment costs in comparison to eluent chromatography. SMB units can operate under high productivity overloaded conditions. This leads to nonlinear competitive adsorption behavior, which has to be accounted for when designing and optimizing new SMB separations. The so called “Triangle Theory”, which is briefly reviewed in this chapter, provides explicit criteria for the choice of the operating conditions of SMB units to achieve the prescribed separation of a mixture characterized by Langmuir, modified Langmuir and bi-Langmuir isotherms.

The application of the SMB-technique to the downstream processing of biotechnological products requires some specific changes to meet the special demands of bioproduct isolation. Some exemplary applications are given including separations of sugars, proteins,monoclonal antibodies, ionic molecules and optical isomers and for desalting.

Keywords

Preparative chromatography Simulated moving bed chromatography Continuous separation technique Triangle theory Bioseparation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pröll T, Küsters E (1998) J. Chromatogr. A 800:135CrossRefGoogle Scholar
  2. 2.
    Broughton DB (1961) US Patent 2 985 589Google Scholar
  3. 3.
    Balannec B, Hotier G (1993) From batch to countercurrent chromatography. In: Ganetsos G, Barker PE (eds) Preparative and Production Scale Chromatography, Marcel Decker, New YorkGoogle Scholar
  4. 4.
    Nicoud RM (1998) Simulated Moving Bed (SMB): Some Possible Applications for Biotechnology. In: Subramanian G (ed) Bioseparation and Bioprocessing, Wiley-VCH, Weinheim-New YorkGoogle Scholar
  5. 5.
    Blehaut J, Nicoud RM (1998) Analysis 26:M60CrossRefGoogle Scholar
  6. 6.
    Nicoud RM, Fuchs G, Adam P, Bailly M, Küsters E, Antia FD, Reuille R, Schmid E (1993) Chirality 5:267CrossRefGoogle Scholar
  7. 7.
    Nicoud RM, Bailly M, Kinkel JN, Devant R, Hampe T, Küsters E (1993) In: Nicoud RM (ed) Simulated Moving Bed: Basics and Applications, INPL, Nancy, France, p 65Google Scholar
  8. 8.
    Küsters E, Gerber G, Antia FD (1995) Chromatographia 40:387CrossRefGoogle Scholar
  9. 9.
    Blehaut J, Charton F, Nicoud RM (1996) LC-GC Intl 9:228Google Scholar
  10. 10.
    Schulte M, Britsch L, Strube J (2000) Acta Biotechnol 20:3CrossRefGoogle Scholar
  11. 11.
    Guiochon G, Golshan Shirazi S, Katti AM (1994) Fundamentals of preparative and nonlinear chromatography, Academic Press, BostonGoogle Scholar
  12. 12.
    Nicoud RM, Blehaut J, Charton F (1995) J. Chromatogr. 702:97CrossRefGoogle Scholar
  13. 13.
    Strube J, Altenhöner U, Meurer M, Schmidt-Traub H (1997) Chem.Ing.Tech. 69:328CrossRefGoogle Scholar
  14. 14.
    Morbidelli M, Mazzotti M, Pedeferri M (1996) Chiral Europe 96, Symposium Proceedings 103Google Scholar
  15. 15.
    Mazzotti M, Storti G, Morbidelli M (1997) J. Chromatogr. 769:3CrossRefGoogle Scholar
  16. 16.
    Van Tassel PR, Viot P, Tarjus G (1997) J. Chem. Phys. 106:761CrossRefGoogle Scholar
  17. 17.
    Hotier G, Cohen C, Couenne N, Nicoud RM (1996) US Patent 5 578 216Google Scholar
  18. 18.
    Charton F, Nicoud RM (1995) J. Chromatogr. A 702:97CrossRefGoogle Scholar
  19. 19.
    Migliorini C, Mazzotti M, Morbidelli M (1998) J. Chromatogr. A 827:161CrossRefGoogle Scholar
  20. 20.
    Storti G, Mazzotti M, Morbidelli M, Carrà S (1993) AIChE J.39:471CrossRefGoogle Scholar
  21. 21.
    Mazzotti M, Storti G, Morbidelli M (1994) AIChE J. 40:1825CrossRefGoogle Scholar
  22. 22.
    Storti G, Baciocchi R, Mazzotti M, Morbidelli M (1995) Ind. Eng. Chem. Res. 34:288CrossRefGoogle Scholar
  23. 23.
    Mazzotti M, Storti G, Morbidelli M (1996) AIChE J. 42:2784CrossRefGoogle Scholar
  24. 24.
    Mazzotti M, Storti G, Morbidelli M (1997) AIChE J. 43:64CrossRefGoogle Scholar
  25. 25.
    Mazzotti M, Storti G, Morbidelli M (1997) J. Chromatogr. A 769:3CrossRefGoogle Scholar
  26. 26.
    Chiang AST (1998) AIChE J. 44:332CrossRefGoogle Scholar
  27. 27.
    Gentilini A, Migliorini C, Mazzotti M, Morbidelli M (1998) J. Chromatogr. A 805:37CrossRefGoogle Scholar
  28. 28.
    Zhong G, Guiochon G (1997) Chem. Eng. Sci. 52:4403CrossRefGoogle Scholar
  29. 29.
    Ruthven DM, Ching CB (1989) Chem. Eng. Sci. 44:1011CrossRefGoogle Scholar
  30. 30.
    Charton F, Nicoud RM (1995) J. Chromatogr. A 702:97CrossRefGoogle Scholar
  31. 31.
    Migliorini C, Gentilini A, Mazzotti M, Morbidelli M (1998) Ind. Eng. Chem. Res.Google Scholar
  32. 32.
    Barker PE, Critcher X (1960) Chem. Eng. Sci. 13:82CrossRefGoogle Scholar
  33. 33.
    Hashimoto K, Adashi S, Noujima H, Maruyama H (1983) J. Chem. Eng. Jpn 16:400CrossRefGoogle Scholar
  34. 34.
    Ching CB, Ruthven DM (1985) Chem. Eng. Sci. 40:877CrossRefGoogle Scholar
  35. 35.
    Ching CB, Ruthven DM, Hidajat K (1985) Chem. Eng. Sci. 40:1411CrossRefGoogle Scholar
  36. 36.
    Hashimoto K, Adachi S, Shirai Y, Mortshita M (1992) Operation and Design of Simulated Moving Bed Adsorbers. In: Ganetsos G, Barker PE (eds) Preparative and Production Scale Chromatography, Marcel Dekker, New YorkGoogle Scholar
  37. 37.
    Blezer HJ, De Rosset AJ (1977) Die Starke 29:393Google Scholar
  38. 38.
    Kishihara S, Horikawa H, Tamaki H, Fujii S, Nakajima Y, Nishio K (1989) J. Chem. Eng. Jpn 22:434CrossRefGoogle Scholar
  39. 39.
    Ganetsos G, Barker PE (1993) (eds) Preparative and Production Scale Chromatography, Marcel Dekker, New YorkGoogle Scholar
  40. 40.
    Maki H, Fukuda H, Morikawa H (1987) J.Ferment.Technol. 65:61CrossRefGoogle Scholar
  41. 41.
    Hashimoto K, Adachi S, Shirai Y (1988) Agric. Biol. Chem. 52:2161Google Scholar
  42. 42.
    Huang SY, Lin CK, Chang WH, Lee WS (1986) Chem. Eng. Commun. 456:291CrossRefGoogle Scholar
  43. 43.
    Houwing J, van der Wielen LAM, Luyben KChM (1996) Proceeding of the First European Symposium on Biochemical Engineering Science, Delft University, The Netherlands, ISBN 1872327109, DublinGoogle Scholar
  44. 44.
    Nicoud RM (1996) Recovery of Biological Products VIII, ACS, Tuscon, ArizonaGoogle Scholar
  45. 45.
    Gottschlich N, Kasche V (1997) J. Chromatogr. A 765:201CrossRefGoogle Scholar
  46. 46.
    Van Walsem HJ, Thompson MC (1996) First European Symposium on Biochemical Engineering Science, AECI Bioproducts, Durban, South Africa, ISBN 1872327109, DublinGoogle Scholar
  47. 47.
    Kampen WH, European Patent application, 90307701.4Google Scholar
  48. 48.
    Maki H (1992) In: Ganetsos G, Barker PE (eds) Preparative and Production Scale Chromatography. Marcel Dekker, New YorkGoogle Scholar
  49. 49.
    Szpepy L, Sebestyen Zs, Feher I, Nagy Z (1975) J. Chromatogr. 108:285CrossRefGoogle Scholar
  50. 50.
    Kinkel JN (1995) Proceedings of Chiral Europe’ 95, London, Published by Spring Innovation Ltd., Cheshire, SK7 1BA, EnglandGoogle Scholar
  51. 51.
    Ching CB, Lim BG, Lee EJD, Ng SC (1993) J. Chromatogr. 634:215CrossRefGoogle Scholar
  52. 52.
    Ikeda H, Murata K (1993) 4th Chiral Symposium MontrealGoogle Scholar
  53. 53.
    Negawa M, Shoji F (1992) J. Chromatogr. 590:113CrossRefGoogle Scholar
  54. 54.
    Fuchs G, Nicoud RM, Bailly M (1992) In: Proceedings of the 9th Symposium on Preparative and Industrial Chromatography “Prep 92”, INPL, Nancy, France, p 205Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Sabine Imamoglu
    • 1
  1. 1.Aventis Pharma Deutschland GmbHFrankfurtGermany

Personalised recommendations