Encodings for Equilibrium Logic and Logic Programs with Nested Expressions

  • David Pearce
  • Hans Tompits
  • Stefan Woltran
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2258)


Equilibrium logic is an approach to nonmonotonic reasoning that generalises the stable model and answer set semantics for logic programs. We present a method to implement equilibrium logic and, as a special case, stable models for logic programs with nested expressions, based on polynomial reductions to quantified Boolean formulas (QBFs). Since there now exist efficient QBF-solvers, this reduction technique yields a practically relevant approach to rapid prototyping. The reductions for logic programs with nested expressions generalise previous results presented for other types of logic programs. We use these reductions to derive complexity results for the systems in question. In particular, we show that deciding whether a program with nested expressions has a stable model is Σin2sup complete.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Bayardo and R. Schrag. Using CSP Look-Back Techniques to Solve Real-World SAT Instances. In Proc. AAAI-97, pp. 203–208, 1997.Google Scholar
  2. 2.
    M. Cadoli, A. Giovanardi, and M. Schaerf. An Algorithm to Evaluate Quantified Boolean Formulae. In Proc. AAAI-98, pp. 262–267, 1998.Google Scholar
  3. 3.
    J. Delgrande, T. Schaub, H. Tompits, and S. Woltran. On Computing Solutions to Belief Change Scenarios. In Proc. ECSQARU-01, pp. 510–521, 2001.Google Scholar
  4. 4.
    E. Eder. Relative Complexities of First-Order Calculi. Vieweg Verlag, 1992.Google Scholar
  5. 5.
    U. Egly, T. Eiter, R. Feldmann, V. Klotz, S. Schamberger, H. Tompits, and S. Woltran. On Mechanizing Modal Nonmonotonic Logics. In Proc. DGNMR-01, pp. 44–53, 2001.Google Scholar
  6. 6.
    U. Egly, T. Eiter, V. Klotz, H. Tompits, and S. Woltran. Computing Stable Models with Quantified Boolean Formulas: Some Experimental Results. In Proc. AAAI Spring Symposium-01, pp. 53–59, 2001.Google Scholar
  7. 7.
    U. Egly, T. Eiter, H. Tompits, and S. Woltran. Solving Advanced Reasoning Tasks Using Quantified Boolean Formulas. In Proc. AAAI-00, pp. 417–422, 2000.Google Scholar
  8. 8.
    T. Eiter and G. Gottlob. On the Computational Cost of Disjunctive Logic Programming: Propositional Case. Ann. of Math. and Artificial Intelligence, 15(3–4):289–323, 1995.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    R. Feldmann, B. Monien, and S. Schamberger. A DistributedAlgorithm to Evaluate Quantified Boolean Formulas. In Proc. AAAI-00, pp. 285–290, 2000.Google Scholar
  10. 10.
    M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive Databases. New Generation Computing, 9:365–385, 1991.CrossRefGoogle Scholar
  11. 11.
    E. Giunchiglia, M. Narizzano, and A. Tacchella. QUBE: A System for Deciding Quantified Boolean Formulas Satisfiability. In Proc. IJCAR-01, pp. 364–369, 2001.Google Scholar
  12. 12.
    K. Gödel. Zum intuitionistischen Aussagenkalkül. Anzeiger der Akademie der Wissenschaften in Wien, pp. 65–66, 1932.Google Scholar
  13. 13.
    A. Heyting. Die formalen Regeln der intuitionistischen Logik. Sitz. Berlin, pp. 42–56, 1930.Google Scholar
  14. 14.
    H. Kautz and B. Selman. Planning as Satisfiability. In Proc. ECAI-92, pp. 359–363, 1992.Google Scholar
  15. 15.
    H. Kleine-Büning, M. Karpinski, and A. Flögel. Resolution for Quantified Boolean Formulas. Information and Computation, 117(1):12–18, 1995.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    R. Letz. Advances in Decision Procedures for Quantified Boolean Formulas. In Proc. IJCAR-01Workshop on Theory and Applications of Quantified Boolean Formulas, pp. 55–64, 2001.Google Scholar
  17. 17.
    C. M. Li and Anbulagan. Heuristics Based on Unit Propagation for Satisfiability Problems. In Proc. IJCAI-97, pp. 366–371, 1997.Google Scholar
  18. 18.
    V. Lifschitz, D. Pearce, and A. Valverde. Strongly Equivalent Logic Programs. ACM Transactions on Computational Logic, 2(4), 2001. To appear.Google Scholar
  19. 19.
    V. Lifschitz, L. Tang, and H. Turner. Nested Expressions in Logic Programs. Ann. of Math. and Artificial Intelligence, 25(3–4):369–389, 1999.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    J. Lloyd and R. Topor. Making Prolog More Expressive. J. of Logic Progr., 3:225–240, 1984.CrossRefMathSciNetGoogle Scholar
  21. 21.
    J. Lukasiewicz. Die Logik und das Grundlagenproblem. Les Entretiens de Zürich sue les Fondements et la Méthode des Sciences Mathématiques, 6–9, 12 (1938), 1941.Google Scholar
  22. 22.
    D. Pearce. A New Logical Characterisation of Stable Models and Answer Sets. In Non-Monotonic Extensions of Logic Programming, pp. 57–70. Springer, 1997.Google Scholar
  23. 23.
    D. Pearce. From Here to There: Stable Negation in Logic Programming. In What is Negation? Kluwer, 1999.Google Scholar
  24. 24.
    D. Pearce, I. de Guzmán, and A. Valverde. A Tableau Calculus for Equilibrium Entailment. In Proc. TABLEAUX 2000, pp. 352–367, 2000.Google Scholar
  25. 25.
    D. Pearce, I. de Guzmán, and A. Valverde. Computing Equilibrium Models Using Signed Formulas. In Proc. Computational Logic 2000, pp. 688–702, 2000.Google Scholar
  26. 26.
    D. A. Plaisted and S. Greenbaum. A Structure Preserving Clause Form Translation. J. of Symbolic Computation, 2(3):293–304, 1986.MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    J. Rintanen. Improvements to the Evaluation of Quantified Boolean Formulae. In Proc. IJCAI-99, pp. 1192–1197, 1999.Google Scholar
  28. 28.
    H. Zhang. SATO:An Efficient Propositional Prover. In Proc. CADE-97, pp. 272–275, 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • David Pearce
    • 1
  • Hans Tompits
    • 2
  • Stefan Woltran
    • 2
  1. 1.European Commission, DG Information SocietyFuture and Emerging TechnologiesUK
  2. 2.Institut für Informationssysteme, Abt.Wissensbasierte Systeme 184/3Technische UniversitätWienViennaAustria

Personalised recommendations