The Body, the Mind or the Eye, first?

  • Andrea Bonarini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1856)

Abstract

We present an approach to shape robots on their sensorial ability. We argue that the interface with the external world may strongly condition the design of a robot, from the mechanical aspects to reasoning and learning. We show the implementation of this philosophy in the RoboCup middle-size player Rullit, shaped on its omnidirectional vision sensor.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Agazzi and A. Bonarini. Problems and solutions in acquisition and interpretation of sensorial data on a mobile robot. In IEEE Instrumentation and Measurement Tecnology Conference-IMTC99, Piscataway, NJ, 1999. IEEE Computer Press.Google Scholar
  2. [2]
    M. Asada, editor. RoboCup 98: Robot Soccer World Gup II, Paris, F, 1998. Eurobot Project-CEC.Google Scholar
  3. [3]
    M. Asada, P. Stone, H. Kitano, A. Drogoul, D. Duhaut, M. Veloso, H. Asama, and S. Suzuki. The robocup physical challenge: goals and protocols for phasei. In H. Kitano, editor, RoboCup 91: Robot Soccer World Cup I, pages 42–61. Springer-Verlag, Berlin, D, 1997.Google Scholar
  4. [4]
    A. Bonarini. ELF: Learning incomplete fuzzy rule sets for an autonomous robot. In Hans-Jürgen Zimmermann, editor, First European Congress on Fuzzy and Intelligent Technologies-EUFIT’93, volume 1, pages 69–75, Aachen, D, 1993. Verlag der Augustinus Buchhandlung.Google Scholar
  5. [5]
    A. Bonarini. Evolutionary learning of fuzzy rules: competition and cooperation. In W. Pedrycz, editor, Fuzzy Modelling: Paradigms and Practice, pages 265–284. Kluwer Academic Press, Norwell, MA, 1996.Google Scholar
  6. [6]
    A. Bonarini. Reinforcement distribution to fuzzy classifiers: a methodology to extend crisp algorithms. In IEEE International Conference on Evolutionary Computation-WCCI-ICEC’98, volume 1, pages 51–56, Piscataway, NJ, 1998. IEEE Computer Press.Google Scholar
  7. [7]
    A. Bonarini, P. Aliverti, and M. Lucioni. An omnidirectional vision sensor for fast tracking for mobile robots. In IEEE Instrumentation and Measurement Tecnology Conference-IMTC99, Piscataway, NJ, 1999. IEEE Computer Press.Google Scholar
  8. [8]
    A. Bonarini and F. Basso. Learning to compose fuzzy behaviors for autonomous agents. Int. J. of Approximate Reasoning, 17(4):409–432, 1997.MATHCrossRefGoogle Scholar
  9. [9]
    J. Borenstein, H.R. Everett, and L. Feng. Where am i? sensors and methods for mobile robot positioning. Technical report, The University of Michigan, Ann Arbor, MI, 1996.Google Scholar
  10. [10]
    J-S Gutmann, W. Hatzack, I. Herrmann, B. Nebel, F. Rittinger, A. Topor, T. Weigel, and B. Welsch. The cs freiburg team. In M. Asada, editor, RoboCup 98: Robot Soccer World Cup II, pages 451–457, Paris, F, 1998. Eurobot Project-CEC.Google Scholar
  11. [11]
    G. J. Klir, B. Yuan, and U. St. Clair. Fuzzy set theory: foundations and applicatons. Prentice-Hall, Englewood Cliffs, MA, 1997.Google Scholar
  12. [12]
    D. Nardi, G. Clemente, and E. Pagello. Art azzurra robot team. In M. Asada, editor, RoboCup 98: Robot Soccer World Cup II, pages 467–474, Paris, F, 1998. Eurobot Project-CEC.Google Scholar
  13. [13]
    M. Piaggio and R. Zaccaria. Distributing a robotic system on a network: the ethnos approach. Advanced Robotics Journal, 12(8), 1998.Google Scholar
  14. [14]
    Robocup. The robocup initiative. http://www.RoboCup.org/, 1999.
  15. [15]
    A. Saffiotti, K. Konolige, and E. H. Ruspini. A multivalued-logic approach to integrating planning and control. Artificial Intelligence, 76(1–2):481–526, 1995.CrossRefGoogle Scholar
  16. [16]
    P. Stone and M. Veloso. Tpot-rl: Team-partitioned, opaque-transition reinforcement learning. In M. Asada, editor, RoboCup 98: Robot Soccer World Cup II, pages 221–236, Paris, F, 1998. Eurobot Project-CEC.Google Scholar
  17. [17]
    S. Suzuki, T. Kato, H. Ishizuka, Y. Takahashi, E. Uchibe, and M. Asada. An application of vision-based learning for a real robot in robocup-a goal keeping behavior for a robot with omnidirectional vision and an embedded servoing. In M. Asada, editor, RoboCup 98: Robot Soccer World Cup II, pages 467–474, Paris, F, 1998. Eurobot Project-CEC.Google Scholar
  18. [18]
    E. Uchibe, M. Nakamura, and M. Asada. Cooperative and competitive behavior acquisition for mobile robots through co-evolution. In Proceedings of the Genetic and Evolutionary Computation Conference-GECCO99, pages 1406–1413, San Francisco, CA, 1999. Morgan Kaufmann.Google Scholar
  19. [19]
    Y. Yagi, S. Kawato, and S. Tsuji. Real-time omnidirectional image sensor (copis) for vision-guided navigation. IEEE Transactions on Robotics and Automation, 10(1):11–22, 1994.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Andrea Bonarini
    • 1
  1. 1.AI and Robotics Project, Dipartimento di Elettronica e InformazionePolitecnico di MilanoMilanoItaly

Personalised recommendations