The Wide Trail Design Strategy

  • Joan Daemen
  • Vincent Rijmen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2260)


We explain the theoretical background of the wide trail design strategy, which was used to design Rijndael, the Advanced Encryption Standard (AES). In order to facilitate the discussion, we introduce our own notation to describe differential and linear cryptanalysis. We present a block cipher structure and prove bounds on the resistance against differential and linear cryptanalysis.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Anderson, E. Biham, and L. R. Knudsen. Serpent. In Proceedings of the first AES candidate conference, Ventura, August 1998.Google Scholar
  2. 2.
    E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosystems. Journal of Cryptology, 4(1):3–72, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    J. Daemen, R. Govaerts, and J. Vandewalle. Anew approach to block cipher design. In Vaudenay [10], pages 18–32.Google Scholar
  4. 4.
    J. Daemen, L. R. Knudsen, and V. Rijmen. Linear frameworks for block ciphers. Designs, Codes and Cryptography, 22(1):65–87, January 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    J. Daemen, M. Peeters, G. V. Assche, and V. Rijmen. Noekeon. In First open NESSIE Workshop, Leuven, November2000.Google Scholar
  6. 6.
    L. R. Knudsen. Truncated and higher order differentials. In B. Preneel, editor, Fast Software Encryption’ 94, volume 1008 of Lecture Notes in Computer Science, pages 196–211. Springer-Verlag, 1995.Google Scholar
  7. 7.
    M. Matsui. Linear cryptanalysis method for DES cipher. In T. Helleseth, editor, Advances in Cryptology, Proceedings of Eurocrypt’ 93, volume 765 of Lecture Notes in Computer Science, pages 386–397. Springer-Verlag, 1994.Google Scholar
  8. 8.
    K. Nyberg. Linear approximation of block ciphers. In A. D. Santis, editor, Advances in Cryptology, Proceedings of Eurocrypt’ 94, volume 950 of Lecture Notes in Computer Science, pages 439–444. Springer-Verlag, 1995.CrossRefGoogle Scholar
  9. 9.
    C. E. Shannon. Communication theory of secrecy systems. Bell Syst. Tech. Journal, 28:656–715, 1949.MathSciNetGoogle Scholar
  10. 10.
    S. Vaudenay, editor. Fast Software Encryption’ 98, volume 1372 of Lecture Notes in Computer Science. Springer-Verlag, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Joan Daemen
    • 1
  • Vincent Rijmen
    • 2
  1. 1.ProtonWorldBrusselBelgium
  2. 2.CRYPTOMAThICLeuvenBelgium

Personalised recommendations