Language Containment Checking with Nondeterministic BDDs

  • Bernd Finkbeiner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2031)


Checking for language containment between nondeterministic ω-automata is a central task in automata-based hierarchical verification. We present a symbolic procedure for language containment checking between two Büuchi automata. Our algorithm avoids determinization by intersecting the implementation automaton with the complement of the specification automaton as an alternating automaton. We present a fix-point algorithm for the emptiness check of alternating automata. The main data structure is a nondeterministic extension of binary decision diagrams that canonically represents sets of Boolean functions.


Source Node Boolean Function Internal Node Terminal Node Target Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. AHM+98.
    R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Rajamani, and S. Tasiran. Mocha: modularity in model checking. In A. Hu and M. Vardi, editors, CAV 98: Computer-aided Verification, Lecture Notes in Computer Science 1427, pages 521–525. Springer-Verlag, 1998.CrossRefGoogle Scholar
  2. BD96.
    V. Bertacco and M. Damiani. Boolean function representation using parallel access diagrams. In The Sixth Great Lakes Symposium on VLSI. IEEE, 1996.Google Scholar
  3. BMUV97.
    N. Buhrke, O. Matz, S. Ulbrand, and J. Vöge. The automata theory package omega. In WIA’97, vol. 1436 of LNCS. Springer-Verlag, 1997.Google Scholar
  4. Bry86.
    R.E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Computers, C-35(8):677–691, August 1986.CrossRefGoogle Scholar
  5. CGP99.
    E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.Google Scholar
  6. KV97.
    O. Kupferman and M. Vardi. Weak alternating automata are not that weak. In 5th Israeli Symposium on Theory of Computing and Systems, pages 147–158. IEEE Computer Society Press, 1997.Google Scholar
  7. KVBSV94.
    T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. A fully implicit algorithm for exact state minimization. In 31st ACM/IEEE Design Automation Conference, pages 684–690. ACM, 1994.Google Scholar
  8. MS87.
    D.E. Muller and P.E. Schupp. Alternating automata on infinite trees. Theoretical Computer Science, 54(2–3):267–276, October 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  9. MS00.
    Z. Manna and H.B. Sipma. Alternating the temporal picture for safety. In U. Montanari, J.D. Rolim, and E. Welzl, editors, Proc. 27th Intl. Colloq. Aut. Lang. Prog., vol. 1853, pages 429–450, Geneva, Switzerland, July 2000. Springer-Verlag.Google Scholar
  10. Saf88.
    S. Safra. On the complexity of !-automata. In Proc. 29th IEEE Symp. Found. of Comp. Sci., pages 319–327, 1988.Google Scholar
  11. TBK95.
    H. Touati, R.K. Brayton, and R. Kurshan. Testing language containment for ω-automata using BDDs. Inf. and Comp., 118(1):101–109, April 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  12. THB95.
    S. Tasiran, R. Hojati, and R.K. Brayton. Language containment using non-deterministic omega-automata. In Proc. of CHARME’ 95: Advanced Research Working Conference on Correct Hardware design and verification methods, vol. 987 of LNCS. Springer-Verlag, 1995.Google Scholar
  13. Tho94.
    W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science. Elsevier Science Publishers (North-Holland), 1994.Google Scholar
  14. TNB+97.
    K. Takagi, K. Nitta, H. Bouno, Y. Takenaga, and S. Yajima. Computational power of nondeterministic ordered binary decision diagrams and their subclasses. IEICE Transactions on Fundamentals, E80-A(4):663–669, April 1997.Google Scholar
  15. Var95.
    M.Y. Vardi. Alternating automata and program verification. In J. van Leeuwen, editor, Computer Science Today. Recent Trends and Developments, vol. 1000 of LNCS, pages 471–485. Springer-Verlag, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Bernd Finkbeiner
    • 1
  1. 1.Computer Science DepartmentStanford UniversityStanford

Personalised recommendations