Advertisement

Boolean and Cartesian Abstraction for Model Checking C Programs

  • Thomas Ball
  • Andreas Podelski
  • Sriram K. Rajamani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2031)

Abstract

We show how to attack the problem of model checking a C program with recursive procedures using an abstraction that we formally define as the composition of the Boolean and the Cartesian abstractions. It is implemented through a source-to-source transformation into a ‘Boolean’ C program; we give an algorithm to compute the transformation with a cost that is exponential in its theoretical worst-case complexity but feasible in practice.

Keywords

Model Check Post Operator Transition Relation Boolean Variable Abstract Interpretation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate abstraction of C programs. In Proceedings of SIGPLAN Conference on Proramming Language Design and Implementation, 2001 (to appear). ACM, 2001.Google Scholar
  2. 2.
    T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for Boolean programs. In SPIN 00: SPIN Workshop, LNCS 1885, pages 113–130. Springer-Verlag, 2000.Google Scholar
  3. 3.
    E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching time temporal logic. In Logic of Programs, LNCS 131, pages 52–71. Springer-Verlag, 1981.CrossRefGoogle Scholar
  4. 4.
    E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction refinement. In CAV 00: Computer-Aided Verification, LNCS 1855, pages 154–169. Springer-Verlag, 2000.CrossRefGoogle Scholar
  5. 5.
    E. M. Clarke, O. Grumberg, and D. Long. Model checking and abstraction. In POPL 92: Principles of Programming Languages, pages 343–354. ACM, 1992.Google Scholar
  6. 6.
    R. Cleaveland, P. Iyer, and D. Yankelevich. Optimality in abstractions of model checking. In SAS 95: Static Analysis, LNCS 983, pages 51–63. Springer-Verlag, 1995.Google Scholar
  7. 7.
    J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby, S. Laubach, and H. Zheng. Bandera: Extracting finite-state models from java source code. In ICSE 2000: International Conference on Software Engineering, pages 439–448. ACM, 2000.Google Scholar
  8. 8.
    P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for the static analysis of programs by construction or approximation of fixpoints. In POPL 77: Principles of Programming Languages, pages 238–252. ACM, 1977.Google Scholar
  9. 9.
    P. Cousot and R. Cousot. Formal language, grammar and set-constraint-based program analysis by abstract interpretation. In FPCA 95: Functional Programming and Computer Architecture, pages 170–181. ACM, 1995.Google Scholar
  10. 10.
    D. Dams, O. Grumberg, and R. Gerth. Abstract interpretation of reactive systems: abstractions preserving ACTL?, ECTL?, and CTL?. In PROCOMET 94: Programming Concepts, Methods, and Calculi, pages 561–581. Elsevier Science Publishers, 1994.Google Scholar
  11. 11.
    S. Das, D. L. Dill, and S. Park. Experience with predicate abstraction. In CAV 00: Computer-Aided Verification, LNCS 1633, pages 160–171. Springer-Verlag, 1999.CrossRefGoogle Scholar
  12. 12.
    R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations complete. Journal of the ACM, 47(2):361–416, March 2000.CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In CAV 97: Computer Aided Verification, LNCS 1254, pages 72–83. Springer-Verlag, 1997.Google Scholar
  14. 14.
    M. Huth, R. Jagadeesan, and D. A. Schmidt. Modal transition systems: a foundation for three-valued program analysis. In ESOP 01: European Symposium on Programming. Springer-Verlag, 2001. To appear.Google Scholar
  15. 15.
    R. Kurshan. Computer-aided Verification of Coordinating Processes. Princeton University Press, 1994.Google Scholar
  16. 16.
    C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving abstractions for the verification of concurrent systems. Formal Methods in System Design Volume, 6(1):11–44, 1995.zbMATHCrossRefGoogle Scholar
  17. 17.
    A. Podelski. Model checking as constraint solving. In SAS 00: Static Analysis, LNCS 1824, pages 221–37. Springer-Verlag, 2000.Google Scholar
  18. 18.
    T. Reps. Program analysis via graph reachability. Information and Software Technology, 40(11–12):701–726, November-December 1998.CrossRefGoogle Scholar
  19. 19.
    T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via graph reachability. In POPL 95: Principles of Programming Languages, pages 49–61. ACM, 1995.Google Scholar
  20. 20.
    M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. In POPL 99: Principles of Programming Languages, pages 105–118. ACM, 1999.Google Scholar
  21. 21.
    D. Schmidt. Data flow analysis is model checking of abstract interpretation. In POPL 98: Principles of Programming Languages, pages 38–48. ACM, 1998.Google Scholar
  22. 22.
    M. Sharir and A. Pnueli. Two approaches to interprocedural data dalow analysis. In Program Flow Analysis: Theory and Applications, pages 189–233. Prentice-Hall, 1981.Google Scholar
  23. 23.
    B. Steffen. Data flow analysis as model checking. In TACS 91: Theoretical Aspects of Computer Science, LNCS 536, pages 346–365. Springer-Verlag, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Thomas Ball
    • 1
  • Andreas Podelski
    • 1
  • Sriram K. Rajamani
    • 1
  1. 1.Software Productivity ToolsMicrosoft ResearchUSA

Personalised recommendations