Advertisement

Adequacy for Algebraic Effects

  • Gordon Plotkin
  • John Power
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2030)

Abstract

Moggi proposed a monadic account of computational effects. He also presented the computational λ-calculus, λ c , a core call-by-value functional programming language for effects; the effects are obtained by adding appropriate operations. The question arises as to whether one can give a corresponding treatment of operational semantics. We do this in the case of algebraic effects where the operations are given by a single-sorted algebraic signature, and their semantics is supported by the monad, in a certain sense. We consider call-by-value PCF with— and without—recursion, an extension of λ c with arithmetic. We prove general adequacy theorems, and illustrate these with two examples: non-determinism and probabilistic nondeterminism.

Keywords

Operational Semantic Probabilistic Choice Denotational Semantic Operation Symbol Closed Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Abramsky and A. Jung, Domain Theory, in Handbook of Logic in Computer Science (eds. S. Abramsky, D.M. Gabbay and T. S. E. Maibaum), Vol. 3, Semantic Structures, Oxford: Clarendon Press, 1994.Google Scholar
  2. 2.
    S. O. Anderson and A. J. Power, A Representable Approach to Finite Nondeterminism, Theoret. Comput. Sci., Vol. 177, No. 1, pp. 3–25, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    E. Astesiano and G. Costa, Nondeterminism and Fully Abstract Models, in Informatique Theorique et Applications, Vol. 14, No. 4, pp. 323–347, 1980.zbMATHMathSciNetGoogle Scholar
  4. 4.
    C. Baier and M. Kwiatkowska, Domain Equations for Probabilistic Processes, MSCS, Vol. 10, No. 6, pp. 665–717, 2000.zbMATHMathSciNetGoogle Scholar
  5. 5.
    P. Cenciarelli and E. Moggi, A Syntactic Approach to Modularity in Denotational Semantics, in Proc. 5th. Biennial Meeting on Category Theory and Computer Science, LNCS, Berlin: Springer-Verlag, 1993.Google Scholar
  6. 6.
    V. Danos and R. Harmer, Probabilistic Game Semantics, in Proc. 15th LICS, pp. 204–213, Washington: IEEE Press, 2000.Google Scholar
  7. 7.
    M. Felleisen, and D. P. Friedman, Control Operators, the SECD-machine, and the Lambda-Calculus, in Formal Description of Programming Concepts III (ed. M. Wirsing), pp. 193–217, Amsterdam: Elsevier, 1986.Google Scholar
  8. 8.
    I. Guessarian, Algebraic Semantics, LNCS, Vol. 99, Berlin: Springer-Verlag, 1981.zbMATHGoogle Scholar
  9. 9.
    R. Harmer and G. McCusker, A Fully Abstract Game Semantics for Finite Non-determinism, in Proc. 14th LICS, pp. 422–430, Washington: IEEE Press, 1999.Google Scholar
  10. 10.
    M. C. B. Hennessy, The Semantics of Call-By-Value and Call-By-Name in a Non-deterministic Environment, in SIAM J. Comput., Vol. 9, No. 1, pp. 67–84, 1980.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    M. C. B. Hennessy and E. A. Ashcroft, A Mathematical Semantics for a Nonde-terministic Typed Lambda-Calculus, in TCS Vol. 11, pp. 227–245, 1980.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    M. C. B. Hennessy and G. Plotkin, Full Abstraction for a Simple Parallel Programming Language, in Proc. 8th MFCS (ed. J. Beĉvár), Olomouc, Czechoslovakia, LNCS, Vol. 74, pp. 108–120, Berlin: Springer-Verlag, 1979.Google Scholar
  13. 13.
    C. Jones, Probabilistic Non-Determinism, Ph.D. Thesis, University of Edinburgh, Report ECS-LFCS-90-105, 1990.Google Scholar
  14. 14.
    C. Jones and G. D. Plotkin, A Probabilistic Powerdomain of Evaluations, in Proc. 4th LICS, Asilomar, pp. 186–195, Washington: IEEE Press, 1989.Google Scholar
  15. 15.
    A. Jung and R. Tix, The Troublesome Probabilistic Powerdomain, in Proc. Third COMPROX Workshop, ENTCS, Vol. 13, Amsterdam: Elsevier, 1998.Google Scholar
  16. 16.
    G. M. Kelly, Basic Concepts of Enriched Category Theory, Cambridge: CUP, 1982.zbMATHGoogle Scholar
  17. 17.
    Y. Kinoshita and A. J. Power, Data Refinement for Call by Value Languages, submitted, 2000.Google Scholar
  18. 18.
    P. B. Levy, Call-by-Push-Value: A Subsuming Paradigm, in Proc. TLCA’ 99 (ed. J.-Y. Girard), LNCS, Vol. 1581, pp. 228–242, Berlin: Springer-Verlag, 1999.Google Scholar
  19. 19.
    J. Mezei and J. B. Wright, Algebraic Automata and Context Free Sets, in Information and Control, Vol. 11, pp. 3–29, 1967.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    M. W. Mislove, Nondeterminism and Probabilistic Choice: Obeying the Laws, in Proc. CONCUR 2000 (ed. C. Palamidessi), LNCS, Vol. 1877, pp. 350–364, Berlin: Springer-Verlag, 2000.CrossRefGoogle Scholar
  21. 21.
    E. Moggi, Computational Lambda-Calculus and Monads, in Proc. LICS’ 89, pp. 14–23, Washington: IEEE Press, 1989.Google Scholar
  22. 22.
    E. Moggi, An Abstract View of Programming Languages, University of Edinburgh, Report ECS-LFCS-90-113, 1989.Google Scholar
  23. 23.
    E. Moggi, Notions of Computation and Monads, Inf. and Comp., Vol. 93, No. 1, pp. 55–92, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    G. D. Plotkin, A Powerdomain Construction, SIAM J. Comput. Vol. 5, No. 3, pp. 452–487, 1976.zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    G. D. Plotkin, Domains, (http://www.dcs.ed.ac.uk/home/gdp/), 1983.
  26. 26.
    A. J. Power, Modularity in Denotational Semantics, in Proc. MFPS XIII (eds. S. Brookes and M. Mislove), ENTCS, Vol. 6, Amsterdam: Elsevier, 1997.Google Scholar
  27. 27.
    A. J. Power, Enriched Lawvere Theories, in Lambek Festschrift (eds. M. Barr, P. Scott and R. Seely), TAC, Vol. 7, pp. 83–93, 2000.Google Scholar
  28. 28.
    A. J. Power and E. P. Robinson, Modularity and Dyads, in Proc. MFPS XV (eds. S. Brookes, A. Jung, M. Mislove and A. Scedrov), ENTCS Vol. 20, Amsterdam: Elsevier, 1999.Google Scholar
  29. 29.
    A. J. Power and G. Rosolini, A Modular Approach to Denotational Semantics, in Proc. ICALP’ 98 (eds. K. G. Larsen, S. Skyum and G. Winskel), LNCS, Vol. 1443, pp. 351–362 Berlin: Springer-Verlag, 1998.Google Scholar
  30. 30.
    A. J. Power and H. Thielecke, Closed Freyd-and К-categories, in Proc. 26th. ICALP (eds. J. Wiedermann and P. van Emde Boas and M. Nielsen), LNCS, Vol. 1644, pp. 625–634, Berlin: Springer-Verlag, 1999.Google Scholar
  31. 31.
    K. Sieber, Call-by-Value and Nondeterminism, in Proc. TLCA’ 93 (eds. M. Bezem and J. F. Groote), LNCS, Vol. 664, pp. 376–390, Berlin: Springer-Verlag, 1993.Google Scholar
  32. 32.
    A. Simpson, Computational Adequacy in an Elementary Topos, in Proc. CSL’ 98, LNCS, Vol. 1584, pp. 323–342, Berlin: Springer-Verlag, 1999.Google Scholar
  33. 33.
    D. Turi and G. D. Plotkin, Towards a Mathematical Operational Semantics, in Proc. LICS 97, pp. 268–279, Washington: IEEE Press, 1997.Google Scholar
  34. 34.
    G. Winskel, The Formal Semantics of Programming Languages, Cambridge: MIT Press, 1993.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Gordon Plotkin
    • 1
  • John Power
    • 1
  1. 1.Division of InformaticsUniversity of EdinburghEdinburghScotland

Personalised recommendations