Strengthening UML Collaboration Diagrams by State Transformations

  • Reiko Heckel
  • Stefan Sauer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2029)


Collaboration diagrams as described in the official UML documents specify patterns of system structure and interaction. In this paper, we propose their use for specifying, in addition, pre/postconditions and state transformations of operations and scenarios. This conceptual idea is formalized by means of graph transformation systems and graph process, thereby integrating the state transformation with the structural and the interaction aspect.


UML collaboration diagrams pre/postconditions graph transformation graph process 


  1. 1.
    Action Semantics Consortium. Precise action semantics for the Unified Modeling Language, August 2000.
  2. 2.
    P. Bottoni, M. Koch, F. Parisi Presicce, and G. Taentzer. Consistency checking and visualization of OCL constraints. In Evans et al. [13], pages 294–308.Google Scholar
  3. 3.
    D. Coleman, P. Arnold, S. Bodof, C. Dollin, H. Gilchrist, F. Hayes, and P. Jeremes. Object Oriented Development, The Fusion Method. Prentice Hall, 1994.Google Scholar
  4. 4.
    A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Informaticae, 26(3,4):241–266, 1996.zbMATHMathSciNetGoogle Scholar
  5. 5.
    A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Lowe. Algebraic approaches to graph transformation, Part I: Basic concepts and double pushout approach. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing by Graph Transformation, volume 1: Foundations, pages 163–245.World Scientific, 1997.Google Scholar
  6. 6.
    D. D’Souza and A. Wills. Components and Frameworks with UML: The Catalysis Approach. Addison-Wesley, 1998.Google Scholar
  7. 7.
    H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of Graph Grammars and Computing by Graph Transformation, volume 2: Applications, Languages, and Tools. World Scientific, 1999.Google Scholar
  8. 8.
    H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Proc. 6th Int. Workshop on Theory and Application of Graph Transformation (TAGT’98), Paderborn, November 1998, volume 1764 of LNCS. Springer-Verlag, 2000.Google Scholar
  9. 9.
    H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of Graph Grammars and Computing by Graph Transformation, volume 3: Concurrency and Distribution. World Scientific, 1999.Google Scholar
  10. 10.
    H. Ehrig, M. Pfender, and H.J. Schneider. Graph grammars: an algebraic approach. In 14th Annual IEEE Symposium on Switching and Automata Theory, pages 167–180. IEEE, 1973.Google Scholar
  11. 11.
    G. Engels, J.H. Hausmann, R. Heckel, and St. Sauer. Dynamic meta modeling: A graphical approach to the operational semantics of behavioral diagrams in UML. In Evans et al. [13], pages 323–337.Google Scholar
  12. 12.
    G. Engels, R. Hucking, St. Sauer, and A. Wagner. UML collaboration diagrams and their transformation to Java. In France and Rumpe [15], pages 473–488.Google Scholar
  13. 13.
    A. Evans, S. Kent, and B. Selic, editors. Proc. UML 2000-Advancing the Standard, volume 1939 of LNCS. Springer-Verlag, 2000.Google Scholar
  14. 14.
    T. Fischer, J. Niere, L. Torunski, and A. Zundorf. Story diagrams: A new graph transformation language based on UML and Java. In Ehrig et al. [8].Google Scholar
  15. 15.
    R. France and B. Rumpe, editors. Proc. UML’99-Beyond the Standard, volume 1723 of LNCS. Springer-Verlag, 1999.Google Scholar
  16. 16.
    M. Gogolla. Graph transformations on the UML metamodel. In J. D. P. Rolim et al., editors, Proc. ICALP Workshops 2000, Geneva, Switzerland, pages 359–371. Carleton Scientific, 2000.Google Scholar
  17. 17.
    M. Große-Rhode, F. Parisi Presicce, and M. Simeoni. Refinement of graph transformation systems via rule expressions. In Ehrig et al. [8], pages 368–382.Google Scholar
  18. 18.
    R. Heckel, A. Corradini, H. Ehrig, and M. Lowe. Horizontal and vertical structuring of typed graph transformation systems. Math. Struc. in Comp. Science, 6(6):613–648, 1996.zbMATHMathSciNetGoogle Scholar
  19. 19.
    R. Heckel, H. Ehrig, U. Wolter, and A. Corradini. Double-pullback transitions and coalgebraic loose semantics for graph transformation systems. Applied Categorical Structures, 9(1), January 2001.Google Scholar
  20. 20.
    R. Heckel and St. Sauer. Strengthening the semantics of UML collaboration diagrams. In G. Reggio, A. Knapp, B. Rumpe, B. Selic, and R. Wieringa, editors, UML’000 Workshop on Dynamic Behavior in UML Models: Semantic Questions, pages 63–69. October 2000. Tech. Report no. 0006, Ludwig-Maximilians-University Munich, Germany.Google Scholar
  21. 21.
    R. Heckel and A. Zundorf. How to specify a graph transformation approach: A meta model for fujaba. In H. Ehrig and J. Padberg, editors, Uniform Approaches to Graphical Process Specification Techniques, satellite workshop of ETAPS 2001, Genova, Italy, 2001. To appear.Google Scholar
  22. 22.
    A. Knapp. A formal semantics of UML interactions. In France and Rumpe [15], pages 116–130.Google Scholar
  23. 23.
    M. Merro and D. Sangiorgi. On asynchrony in name-passing calculi. In Proc. ICALP’98, volume 1443 of LNCS, pages 856–867. Springer-Verlag, 1998.Google Scholar
  24. 24.
    Object Management Group. UML specification version 1.3, June 1999.
  25. 25.
    Object Management Group. UML specification version 1.4beta R1, November 2000.
  26. 26.
    G. Overgaard. A formal approach to collaborations in the Unified Modeling Language. In France and Rumpe [15], pages 99–115.Google Scholar
  27. 27.
    V. Pratt. Modeling concurrency with partial orders. Int. Journal. of Parallel Programming, 15(1):33–71, February 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    W. Reisig. Petri Nets, volume 4 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1985.Google Scholar
  29. 29.
    A. Schurr, A.J. Winter, and A. Zundorf. The PROGRES approach: Language and environment. In Ehrig et al. [7], pages 487–550.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Reiko Heckel
    • 1
  • Stefan Sauer
    • 1
  1. 1.Dept. of Mathematics and Computer ScienceUniversity of PaderbornPaderbornGermany

Personalised recommendations