On Polynomial Representations of Boolean Functions Related to Some Number Theoretic Problems

  • Erion Plaku
  • Igor E. Shparlinski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2245)


We say a polynomial P over ℤM strongly M-represents a Boolean function F if F(x) ≡P(x) (mod M) for all x∈ {0,1}n. Similarly, P one-sidedly M-represents F if F(x) = 0 ⇔ P(x) ≡ 0 (modM) for all x ∈ {0,1}n. Lower bounds are obtained on the degree and the number of monomials of polynomials over ℤ M, which strongly or one-sidedly M-represent the Boolean function deciding if a given n- bit integer is square-free. Similar lower bounds are also obtained for polynomials over the reals which provide a threshold representation of the above Boolean function.


Lower Bound Boolean Function Great Common Divisor Polynomial Representation Real Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Allender, M. Saks and I. E. Shparlinski, ‘A lower bound for primality’, J. of Comp. and Syst. Sci., 62 (2001), 356–366.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    D. Barrington, R. Beigel, and S. Rudich, ‘Representing Boolean functions as polynomials modulo composite integers’, Comp. Compl., 4, (1994), 367–382.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    D. Barrington and G. Tardos, ‘A lower bound on the MOD 6 degree of the OR function’ Comp. Compl., 7 (1998), 99–108.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    A. Bernasconi, C. Damm and I. E. Shparlinski, ‘On the average sensitivity of testing square-free numbers’, Proc. 5th Intern. Computing and Combinatorics Conf., Tokyo, 1999, Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, 1999, v.1627, 291–299.Google Scholar
  5. 5.
    A. Bernasconi, C. Damm and I. E. Shparlinski, ‘The average sensitivity of squarefreeness’, Comp. Compl. 9 (2000), 39–51.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    A. Bernasconi, C. Damm and I. E. Shparlinski, ‘Circuit and decision tree complexity of some number theoretic problems’, Inform. and Comp., 168 (2001), 113–124.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    A. Bernasconi and I. E. Shparlinski, ‘Circuit complexity of testing square-free numbers’, Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, 1563 (1999), 47–56.Google Scholar
  8. 8.
    J. Bruck, ‘Harmonic analysis of polynomial threshold functions’, SIAM J. Discr. Math., 3 (1990), 168–177.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    J. Bruck and R. Smolensky, ‘Polynomial threshold functions, AC 0 functions, and spectral norms’, SIAM J. Comp., 21 (1992), 33–42.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    N. H. Bshouty, Y. Mansour, B. Schieber and P. Tiwari, ‘Fast exponentiation using the truncation operations’, Comp. Compl., 2 (1992), 244–255.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    P. Bürgisser, M. Clausen and M. A. Shokrollahi, Algebraic complexity theory, Springer-Verlag, Berlin, 1996.Google Scholar
  12. 12.
    D. Coppersmith and I. E. Shparlinski, ‘On polynomial approximation of the discrete logarithm and the Diffie-Hellman mapping’, J. Cryptology, 13 (2000), 339–360.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    H. Davenport, Multiplicative number theory, Graduate Texts in Mathematics, 74. Springer-Verlag, New York, 2000.Google Scholar
  14. 14.
    C. Gotsman and N. Linial, ‘Spectral properties of threshold functions’, Combinatorica, 14 (1994), 35–50.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    F. Green, ‘A complex-number Fourier technique for lower bounds on the mod-m degree’, Comp. Compl., 9 (2000), 16–38.MATHCrossRefGoogle Scholar
  16. 16.
    D. Grigoriev, ‘Lower bounds in the algebraic computational complexity’, Zapiski Nauchn. Semin. Leningr. Otdel. Matem. Inst. Acad. Sci. USSR, 118 (1982), 25–82 (in Russian).Google Scholar
  17. 17.
    D. R. Heath-Brown, ‘The least square-free number in an arithmetic progression’, J. Reine Angew. Math., 332 (1982), 204–220.MATHMathSciNetGoogle Scholar
  18. 18.
    A. G. Khovanski, Fewnomials, Amer. Math. Soc., Providence, RI, 1997.Google Scholar
  19. 19.
    M. Krause and Pudlák, ‘On computing Boolean functions by sparse real polynomials’, Proc. 36th IEEE Symp. on Foundations of Comp. Sci., 1995, 682–691.Google Scholar
  20. 20.
    F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes, North-Holland, Amsterdam, 1977.Google Scholar
  21. 21.
    Y. Mansour, B. Schieber and P. Tiwari, ‘A lower bound for integer greatest common divisor computations’, J. Assoc. Comp. Mach., 38 (1991), 453–471.MATHMathSciNetGoogle Scholar
  22. 22.
    Y. Mansour, B. Schieber and P. Tiwari, ‘Lower bounds for computation with the floor operations’, SIAM J. Comp., 20 (1991), 315–327.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    J. Meidânis, ‘Lower bounds for arithmetic problems’, Inform. Proc. Letters, 38 (1991), 83–87.Google Scholar
  24. 24.
    N. Nisan and M. Szegedy, ‘On the degree of Boolean functions as real polynomials’, Comp. Compl., 4 (1994), 301–313.MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    I. Parberry and P. Yuan Yan, ‘Improved upper and lower time bounds for parallel random access machines without simultaneous writes’, SIAM J. Comp., 20 (1991), 88–99.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    J.-J. Risler, ‘Khovansky’s theorem and complexity theory’, Rocky Mountain J. Math., 14 (1984), 851–853.MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    J.-J. Risler, ‘Additive complexity of real polynomials’, SIAM J. Comp., 14 (1985), 178–183.MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    V. Roychowdhry, K.-Y. Siu and A. Orlitsky, ‘Neural models and spectral methods’, Theoretical advances in neural computing and learning, Kluwer Acad. Publ., Dordrecht, 1994, 3–36.Google Scholar
  29. 29.
    I. E. Shparlinski, Number theoretic methods in cryptography: Complexity lower bounds, Birkhäuser, 1999.Google Scholar
  30. 30.
    S.-C. Tsai, ‘Lower bounds on representing Boolean functions as polynomials in ℤ m’, SIAM J. Discr. Math., 9(1) (1996), 55–62.MATHCrossRefGoogle Scholar
  31. 31.
    I. Wegener, The complexity of Boolean functions, Wiley-Teubner Series in Comp. Sci., Stuttgart, 1987.MATHGoogle Scholar
  32. 32.
    A. Woods, ‘Subset sum “cubes” and the complexity of prime testing‘, Preprint, 2001, 1–17. Available from http://www.maths.uwa.edu.au/~woods/alan_research.html.

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Erion Plaku
    • 1
  • Igor E. Shparlinski
    • 2
  1. 1.Department of Mathematics and Computer ScienceClarkson UniversityPotsdamUSA
  2. 2.Department of ComputingMacquarie UniversityAustralia

Personalised recommendations