On Recognizing Cayley Graphs

  • Lali Barrière
  • Pierre Fraigniaud
  • Cyril Gavoille
  • Bernard Mans
  • John M. Robson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1879)


Given a class C of Cayley graphs, and given an edge-colored graph G of n vertices and m edges, we are interested in the problem of checking whether there exists an isomorphism φ preserving the colors such that G is isomorphic by φ to a graph in C colored by the elements of its generating set. In this paper, we give an O(m log n)-time algorithm to check whether G is color-isomorphic to a Cayley graph, improving a previous O(n 4.752 log n) algorithm. In the case where C is the class of the Cayley graphs defined on Abelian groups, we give an optimal O(m)-time algorithm. This algorithm can be extended to check color-isomorphism with Cayley graphs on Abelian groups of given rank. Finally, we propose an optimal O(m)-time algorithm that tests color-isomorphism between two Cayley graphs on ℤn, i.e., between two circulant graphs. This latter algorithm is extended to an optimal O(n)-time algorithm that tests colorisomorphism between two Abelian Cayley graphs of bounded degree.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.Ádám. Research problem 2–10. J. Combin. Theory, 2:393, 1967.CrossRefGoogle Scholar
  2. 2.
    B. Alspach and T. Parsons. Isomorphism of circulant graphs and digraphs. Discrete Mathematics, 25:97–108, 1979.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    L. Babai. Automorphism groups, isomorphism, reconstruction. In R. Graham, M. Grötschel, and L. Lovász, editors, Handbook of Combinatorics, vol. 2. Elsevier and MIT Press, 1995.Google Scholar
  4. 4.
    G. Birkhoff and S. MacLane. Algebra. Macmillan, 1967.Google Scholar
  5. 5.
    P. Boldi and S. Vigna. Complexity of deciding Sense of Direction. SIAM Journal on Computing, 29(3):779–789, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    B. Codenotti, I. Gerace and S. Vigna. Hardness Results and Spectral Techniques for Combinatorial Problems on Circulant Graphs. Linear Algebra Appl., 285(1–3):123–142, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    B. Elspas and J. Turner. Graphs with circulant adjacency matrices. J. Comb. Theory, 9:229–240, 1970.MathSciNetGoogle Scholar
  8. 8.
    P. Flocchini, B. Mans, and N. Santoro. Sense of direction in distributed computing. In Proceedings of DISC’ 98, LNCS vol. 1499, Springer-Verlag, S. Kutten (Ed.), pages 1–15, 1998.Google Scholar
  9. 9.
    P. Flocchini, A. Roncato, and N. Santoro. Symmetries and sense of direction in labeled graphs. Discrete Applied Mathematics, 87:99–115, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    T. Hagerup. Sorting and searching on the word RAM. In Proceedings of STACS’ 98, LNCS vol. 1379, Springer-Verlag, M. Morvan and Meinel (Eds.), pp. 366–398, 1998.CrossRefGoogle Scholar
  11. 11.
    T. Leighton Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann, 1992.Google Scholar
  12. 12.
    Li, Praeger, and M. Xu. On finite groups with the Cayley isomorphism property. Journal of Graph Theory, 27:21–31, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    G. Miller. On the nlog n isomorphism technique. In Proceedings Tenth Annual ACM Symposium on Theory of Computing (STOC), pp. 51–58, 1978.Google Scholar
  14. 14.
    J. Morris. Isomorphic Cayley graphs on nonisomorphic groups. Journal of Graph Theory, 31:345–362, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    M. Muzychuk and G. Tinhoffer. Recognizing circulant graphs of prime order in polynomial time. The electronic journal of combinatorics, 3, 1998.Google Scholar
  16. 16.
    N. Vikas. An O(n) algorithm for Abelian p-group isomorphism and an O(n log n) algorithm for Abelian group isomorphism. Journal of Computer and System Sciences, 53:1–9, 1996.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Lali Barrière
    • 1
  • Pierre Fraigniaud
    • 2
  • Cyril Gavoille
    • 3
  • Bernard Mans
    • 4
  • John M. Robson
    • 3
  1. 1.Departament de Matemàtica Aplicada i TelemàticaUniv. Politécnica de CatalunyaBarcelonaSpain
  2. 2.Laboratoire de Recherche en Informatique, Bât. 490OrsayFrance
  3. 3.Laboratoire Bordelais de Recherche en InformatiqueTalenceFrance
  4. 4.Department of ComputingMacquarie Univ.SydneyAustralia

Personalised recommendations