Polygon Decomposition for Efficient Construction of Minkowski Sums

  • Pankaj K. Agarwal
  • Eyal Flato
  • Dan Halperin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1879)


Several algorithms for computing the Minkowski sum of two polygons in the plane begin by decomposing each polygon into convex subpolygons. We examine different methods for decomposing polygons by their suitability for efficient construction of Minkowski sums. We study and experiment with various well-known decompositions as well as with several new decomposition schemes. We report on our experiments with the various decompositions and different input polygons. Among our findings are that in general: (i) triangulations are too costly (ii) what constitutes a good decomposition for one of the input polygons depends on the other input polygon—consequently, we develop a procedure for simultaneously decomposing the two polygons such that a “mixed” objective function is minimized, (iii) there are optimal decomposition algorithms that significantly expedite the Minkowski-sum computation, but the decomposition itself is expensive to compute — in such cases simple heuristics that approximate the optimal decomposition perform very well.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The CGAL User Manual, Version 2.0, 1999. http://www.cs.ruu.nl/CGAL.
  2. 2.
    P. K. Agarwal and M. Sharir. Arrangements. In J.-R. Sack and J. Urrutia, editors, Handbook of Computational Geometry, pages 49–119. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 1999.Google Scholar
  3. 3.
    M. Bern. Triangulations. In J. E. Goodman and J. O’Rourke, editors, Handbook of Discrete and Computational Geometry, chapter 22, pages 413–428. CRC Press LLC, Boca Raton, FL, 1997.Google Scholar
  4. 4.
    B. Chazelle and D. P. Dobkin. Optimal convex decompositions. In G. T. Toussaint, editor, Computational Geometry, pages 63–133. North-Holland, Amsterdam, Netherlands, 1985.Google Scholar
  5. 5.
    M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry: Algorithms and Applications. Springer-Verlag, Berlin, 1997.MATHGoogle Scholar
  6. 6.
    G. Elber and M.-S. Kim, editors. Special Issue of Computer Aided Design: Offsets, Sweeps and Minkowski Sums, volume 31. 1999.Google Scholar
  7. 7.
    A. Fabri, G. Giezeman, L. Kettner, S. Schirra, and S. Schönherr. On the design of CGAL, the Computational Geometry Algorithms Library. Technical Report MPI-I-98-1-007, MPI Inform., 1998. To appear in Software—Practice and Experience Google Scholar
  8. 8.
    E. Flato. Robust and efficient construction of planar Minkowski sums. Master’s thesis, Dept. Comput. Sci., Tel-Aviv Univ., 2000. Forthcoming. http://www.math.tau.ac.il/ flato/thesis.ps.gz.
  9. 9.
    E. Flato, D. Halperin, I. Hanniel, and O. Nechushtan. The design and implementation of planar maps in CGAL. In J. Vitter and C. Zaroliagis, editors, Proceedings of the 3rd Workshop on Algorithm Engineering, volume 1148 of Lecture Notes Comput. Sci., pages 154–168. Springer-Verlag, 1999. Full version: http://www.math.tau.ac.il/ flato/WaeHtml/index.htm.
  10. 10.
    D. Halperin. Arrangements. In J. E. Goodman and J. O’Rourke, editors, Handbook of Discrete and Computational Geometry, chapter 21, pages 389–412. CRC Press LLC, Boca Raton, FL, 1997.Google Scholar
  11. 11.
    D. Halperin, J.-C. Latombe, and R. H. Wilson. A general framework for assembly planning: The motion space approach. Algorithmica, 26:577–601, 2000.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    S. Har-Peled, T. M. Chan, B. Aronov, D. Halperin, and J. Snoeyink. The complexity of a single face of a Minkowski sum. In Proc. 7th Canad. Conf. Comput. Geom., pages 91–96, 1995.Google Scholar
  13. 13.
    G. Kant and H. L. Bodlaender. Triangulating planar graphs while minimizing the maximum degree. In Proc. 3rd Scand. Workshop Algorithm Theory, volume 621 of Lecture Notes Comput. Sci., pages 258–271. Springer-Verlag, 1992.Google Scholar
  14. 14.
    A. Kaul, M. A. O’Connor, and V. Srinivasan. Computing Minkowski sums of regular polygons. In Proc. 3rd Canad. Conf. Comput. Geom., pages 74–77, Aug. 1991.Google Scholar
  15. 15.
    K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles. Discrete Comput. Geom., 1:59–71, 1986.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    J. M. Keil. Decomposing a polygon into simpler components. SIAM J. Comput., 14:799–817, 1985.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    J. M. Keil and J. Snoeyink. On the time bound for convex decomposition of simple polygons. In Proc. 10th Canad. Conf. Comput. Geom., 1998.Google Scholar
  18. 18.
    M. Keil. Polygon decomposition. In J.-R. Sack and J. Urrutia, editors, Handbook of Computational Geometry. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 1999.Google Scholar
  19. 19.
    J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, 1991.Google Scholar
  20. 20.
    D. Leven and M. Sharir. Planning a purely translational motion for a convex object in two-dimensional space using generalized Voronoi diagrams. Discrete Comput. Geom., 2:9–31, 1987.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    K. Melhorn and S. Näher. The LEDA Platform of Combinatorial and Geometric Computing. Cambridge University Press, 1999.Google Scholar
  22. 22.
    K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms. Prentice Hall, Englewood Cliffs, NJ, 1994.Google Scholar
  23. 23.
    R. Pollack, M. Sharir, and S. Sifrony. Separating two simple polygons by a sequence of translations. Discrete Comput. Geom., 3:123–136, 1988.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    L. Santaló. Integral Probability and Geometric Probability, volume 1 of Encyclopedia of Mathematics and its Applications. Addison-Wesley, 1979.Google Scholar
  25. 25.
    M. Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their Geometric Applications Cambridge University Press, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Pankaj K. Agarwal
    • 1
  • Eyal Flato
    • 2
  • Dan Halperin
    • 2
  1. 1.Department of Computer ScienceDuke UniversityDurham
  2. 2.Department of Computer ScienceTel Aviv UniversityTel-AvivIsrael

Personalised recommendations