Property Testing in Computational Geometry

(Extended Abstract)
  • Artur Czumaj
  • Christian Sohler
  • Martin Ziegler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1879)


We consider the notion of property testing as applied to computational geometry. We aim at developing efficient algorithms which determine whether a given (geometrical) object has a predetermined property Q or is “far” from any object having the property. We show that many basic geometric properties have very efficient testing algorithms, whose running time is significantly smaller than the object description size.


Computational Geometry Delaunay Triangulation Geometric Object Query Complexity Property Testing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efficient testing of large graphs. In Proc. 40th IEEE FOCS, pp. 656–666, 1999.Google Scholar
  2. 2.
    N. Alon, M. Krivelevich, I. Newman, and M. Szegedy. Regular languages are testable with a constant number of queries. In Proc. 40th IEEE FOCS, pp. 645–655, 1999.Google Scholar
  3. 3.
    H. Alt, R. Fleischer, M. Kaufmann, K. Mehlhorn, S. Näher, S. Schirra, and C. Uhrig. Algorithmica, 8(5/6):365–389, 1992.MathSciNetGoogle Scholar
  4. 4.
    M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical problems. Journal of Computer and System Sciences, 47(3):549–595, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    T. M. Chan. Output-sensitive results on convex hulls, extreme points, and related problems. Discrete & Computational Geometry, 16:369–387, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    M. Dyer and N. Megiddo. Linear programming in low dimensions. In J. E. Goodman and J. O’Rourke, eds., Handbook of Discrete and Computational Geometry, ch. 38, pp. 699–710, CRC Press, Boca Raton, FL, 1997.Google Scholar
  7. 7.
    F. Ergün, S. Kannan, S. Ravi Kumar, R. Rubinfeld, and M. Viswanathan. Spot-checkers. In Proc. 30th ACM STOC, pp. 259–268, 1998.Google Scholar
  8. 8.
    F. Ergün, S. Ravi Kumar, and R. Rubinfeld. Approximate checking of polynomials and functional equations. In Proc. 37th IEEE FOCS, pp. 592–601, 1996.Google Scholar
  9. 9.
    O. Goldreich, S. Goldwasser, E. Lehman, and D. Ron. Testing monotonicity. In Proc. 39th IEEE FOCS, pp. 426–435, 1998.Google Scholar
  10. 10.
    O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and approximation. Journal of the ACM, 45(4):653–750, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    O. Goldreich and D. Ron. Property testing in bounded degree graphs. In Proc. 29th ACM STOC, pp. 406–415, 1997.Google Scholar
  12. 12.
    O. Goldreich and D. Ron. A sublinear bipartiteness tester for bounded degree graphs. Combinatorica, 19(3):335–373, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    D. Haussler and E. Welzl. Epsilon-nets and simplex range queries. Discrete & Computational Geometry, 2:127–151, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    K. Mehlhorn, S. Näher, M. Seel, R. Seidel, T. Schilz, S. Schirra, and C. Uhrig. Checking geometric programs or verification of geometric structures. Computational Geometry: Theory and Applications, 12:85–103, 1999.zbMATHMathSciNetGoogle Scholar
  15. 15.
    R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    R. Rubinfeld. Robust functional equations and their applications to program testing. In Proc. 35th IEEE FOCS, pp. 288–299, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Artur Czumaj
    • 1
  • Christian Sohler
    • 2
  • Martin Ziegler
    • 2
  1. 1.Department of Computer and Information ScienceNew Jersey Institute of TechnologyNewarkUSA
  2. 2.Heinz Nixdorf Institute and Department of Mathematics & Computer ScienceUniversity of PaderbornPaderbornGermany

Personalised recommendations